Measurement of Direct CP Violation in Charged Kaons Decays by the NA48 Experiment in 2003

Gianmaria Collazuol

Università & INFN Firenze

XIVth RENCONTRES DE BLOIS

16th - 22nd June 2002

- Physics Motivation
- NA48 Method
- Beams and Detector
- Expected Uncertainties
- Conclusions

On behalf of the NA48/II Collaboration

Direct CP violation in K^* decays

Precise studies of direct CP violation in different channels of K decays powerful tool to constrain CKM parameters to search for new physics

Direct CP violation in K^o decays:

$$K_{L} = K_{2}^{CP=-1} + \varepsilon K_{1}^{CP=+1}$$

$$\pi^{+}\pi^{-}, \pi^{o}\pi^{o}$$

$$CP=+1$$

Two pion state from K^o can have I=0 or I=2 decay through TWO INTERFERING AMPLITUDES A_0 ($\Delta I=1/2$) and A_2 ($\Delta I=3/2$) with different weak and strong phases

CP violation in the decay
$$|A(K^o \to (2\pi) \)| \neq |A(\overline{K^o} \to \overline{(2\pi)} \)|$$

Direct CP violation firmly established (KTeV, NA48) in K^o decays:

$$\frac{\Gamma(K^o \to \pi^+ \pi^-) - \Gamma(\overline{K^o} \to \pi^+ \pi^-)}{\Gamma(K^o \to \pi^+ \pi^-) + \Gamma(\overline{K^o} \to \pi^+ \pi^-)} = (4.8 \pm 0.7) \times 10^{-6}$$

(NA48 final result)

Direct CP violation in K^+ decays

Direct CP violation is expected to produce different amplitudes

$$|A(K^+ \to (3\pi)^+)| \neq |A(K^- \to (3\pi)^-)|$$

Parametriz. $A(K \to 3\pi) = a + b \cdot u + O(u^2, v^2)$ $u = (s_3 - s_0)/m_\pi^2$, $v = (s_1 - s_2)/m_\pi^2 \to \mathsf{Dalitz}$ var. a and $b \to \mathsf{TWO}$ $\Delta I = 1/2$ INTERFERING AMPLITUDES

with different strong and weak phases

Observable matrix elements:

$$|M(u,v)|^2 = 1 + g \cdot u + O(u^2, v^2)$$

slope param. g sensitive to interference of a and b

Direct CP violation induces different probability distributions of the final state momenta configuration for K^+ and K^- decays

Observable asymmetry:

$$A_g = \frac{g^+ - g^-}{g^+ + g^-} \neq 0$$

Direct CP violation in K^{\pm} **decays**

Expectations for A_g :

$$K^{\pm} \rightarrow \pi^{\pm}\pi^{-}\pi^{+}$$
 decay

SM predictions: $A_q \sim \text{few } 10^{-5}$

Beyond SM: A_q up to few 10^{-4}

$$K^\pm \to \pi^\pm \pi^o \pi^o$$
 decay $A_{g'} \approx A_g$ in case $\Delta I = 3/2$ transitions are suppressed

Measurement of A_g :

$$A_g = (-7 \pm 5) \cdot 10^{-3} \text{ in } K^{\pm} \to \pi^+ \pi^- \pi^{\pm} \text{ decay}$$
 (Ford et al. 1970)

Measurements of linear slope parameters:

$$K^{\pm} \to \pi^{+}\pi^{-}\pi^{\pm} \qquad K^{\pm} \to \pi^{o}\pi^{o}\pi^{\pm}$$

$$g^{+} \quad -0.2154 \pm 0.0035 \qquad 0.672 \pm 0.030$$

$$g^{-} \quad -0.2170 \pm 0.0070 \qquad 0.642 \pm 0.057$$
 (PDG) (PDG + hep-ex/0205027)

NA48 method

Count the decays in the two modes $K^{\pm} \to \pi^+\pi^-\pi^\pm$ measure the ratio $R(u) = \frac{N^+(u)}{N^-(u)}$ as a function of the Dalitz variable u

If acceptances equal for the two modes:

$$R(u) \propto \frac{1+g^+u+O(u^2)}{1+g^-u+O(u^2)} \propto 1 + (g^+ - g^-) \cdot u$$

Slope of $R(u) \longrightarrow A_g \neq 0$

NA48 method

- Two simultaneous focused K^+ and K^- beams overlapping in space and time with narrow band momentum $(p_K = 60 \pm 3 GeV/c)$
- Detect asymmetry exclusively with ratio of distributions for K^+ and K^- and in bins of kaon momentum p_K
- Equalize K^+ and K^- Acceptances by running with both polarities for the spectrometer magnet regularly alternated

Simultaneous K⁺ and K⁻ beams

Simultaneous K⁺ and K⁻ beams

Beam	K ⁺		K-
Primary proton momentum (GeV/c)		400	
Duty cycle (s/s)		5.2/16.8	
P.o.t. per cycle		10^{12}	
Production angle (mrad)		0^o	
Beam Acceptance (mrad)		± 0.36	
Beam Momentum (GeV/c)		60 ± 3	
Target to final coll. (m)		102	
$ m p/ar{p}$ per cycle (10^6)	8.6		0.9
π^+/π^- per cycle (10^6)	33.2		24.6
$\mathrm{K^+/K^-}$ per cycle (10^6)	3.1		1.8
Fiducial Region from target (m)		107 < z < 207	
$\mathrm{K}^{\pm} \rightarrow (3\pi)^{\pm}$ per year (10^{10})	1.4		0.8

KAon BEam Spectrometer

"Individual" Kaon Measurement
by 3 double stations of
projection chambers
MicrOmega type amplification stages
placed in 2nd Acromat

Measure TIME and VERTICAL POSITION of each K^{\pm}

- kaon TAGGING with TOF
- measurement of kaon MOMENTUM and CHARGE
- high rate capability (up to 40 MHz)
- $\delta p/p < 1\%$
- $\sigma_t < 1$ ns
- $\sigma_{\theta_{x,y}} < 10 \text{ mrad}$
- material $< 10^{-3} X_o$

KABES

MG (Micromegas type projection chamber)

Muon veto sytem
Hadron calorimeter
Liquid krypton calorimeter
Hodoscope
Drift chamber 4
Anti counter 7

Helium tank

Drift chamber 2
Anti counter 6

Drift chamber 1

Kevlar window

MAGNETIC SPECTROMETER

- → Redundancy → High Efficiency
- → High Resolution
- HODOSCOPE
- → Fast & High Granularity Multplicity Trigger
- \rightarrow Precise Time Meas. $(\sigma_t \sim 150 \ ps)$
- MUON VETO \rightarrow Off-line Rejection of μ Background.
- LIQUID KRYPTON ELECTROMAGNETIC CALORIMETER :
- → Quasi-Homogeneous & High Granularity
- \rightarrow Trigger with no dead-time
- ightarrow Precise Time Meas. $(\sigma_t \sim 220 \ ps)$
- ightarrow High E Resol. $(\sigma_E/E \sim 1\% \text{ for } 20 \text{ GeV photon})$
- \rightarrow Powerful e/π discrimin. $(1:10^4)$

iviagnetic spectrometer

Per Chamber:

- 8 planes of 256 wires
- $\sigma_{X,Y} \sim 90 \ \mu \text{m}$
- NEW DCH Read-Out
 High Hit Rate Capab.
 NO Dead-Time

$$K^{\pm} \rightarrow \pi^{+}\pi^{-}\pi^{\pm}$$

$$K_L \rightarrow \pi^+\pi^-$$

Kaon mass resolution $\sim 2.5 \text{ MeV/c}^2$

 $\sigma(p)/p \simeq 0.5 \% \oplus 0.009 p \text{ [GeV/c] }\%$

pprox 0.5 % for 20 GeV/c track momentum

Trigger

Neutral

- Input rate capability: up to few MHz
- Fully pipelined system using LKr cell information summed to horizontal and vertical projections to compute energy, centre of gravity, π^o vertices position and number of showers
- Latency 5μ s
- Negligible Dead Time

Charged

- Level 1 : Fast Trigger
 - Input rate capability: up to few MHz
 - Track multiplicity in hodoscope
 - Track multiplicity in DCH (opt.)
 - Energy in calorimeter (opt.)
- ANTI-counters and μ -VETO (opt.)
- Level 2 : On-line Processing of tracks
 - Input rate capability: 200 KHz
 - Latency $< 100~\mu s$
- Small Dead Time < 0.1% with the NEW DCH READ-OUT

Expected Rates

Source	Rates (KHz)
$\pi^+ o \mu^+ u$	250
$\pi^- o \mu^- \nu$	150
$K^+ o all$	110
$K^- o all$	60
trigger L1 charged (Hodoscope Multiplicity ≥ 2)	120
trigger L1 neutral (LKr Peak Multiplicity ≥ 4)	15

Most of the μ through the beam pipe

Reconstruction

decay	$K^{\pm} \rightarrow \pi^{+}\pi^{-}\pi^{\pm}$	$K^{\pm} \to \pi^{o} \pi^{o} \pi^{\pm}$
Acceptance (%) ${ m K^+}$ / ${ m K^-}$ decays	45 23000 / 14000	6.5 500 / 300
reconstructed per cycle m_K resol. (MeV/c ²)	1.5	1.2
p_K resol. (MeV/c)	450	350
Z vertex resol. (cm)	65	60
u resol.	$\lesssim 2 \cdot 10^{-2}$	$\lesssim 2 \cdot 10^{-2}$

Events collected per year:

$$7.3 \cdot 10^9 \text{ K}^+ \to \pi^+ \pi^- \pi^+ + 4.4 \cdot 10^9 \text{ K}^- \to \pi^+ \pi^- \pi^-$$

 $1.5 \cdot 10^8 \text{ K}^+ \to \pi^{\text{o}} \pi^{\text{o}} \pi^+ + 0.9 \cdot 10^8 \text{ K}^- \to \pi^{\text{o}} \pi^{\text{o}} \pi^-$

With NO significant background neither for $K^\pm \to \pi^+\pi^-\pi^\pm$ nor for $K^\pm \to \pi^o\pi^o\pi^\pm$

Systematics

- Systematics effects are minimized by the simultaneous beams
- Effects from accidentals are negligible
- Differential acceptance effects (from different ${
 m K}^+$ / ${
 m K}^-$ spectra) are much reduced by analysis in p_K bins
- Taking data with regularly alternating spectrometer B field cancel ("B-odd") Left-Right asymmetric effects like:
 - Off-axis beam displacements
 - Asymmetries in efficiences of trigger, spectrometer, and muon-veto

Systematics

Residual effects ("B-even" not canceled by alternating B field)

- Differences in the intensity of the spectrometer B field up/down
- Spurious magnetic fields (fringe fields, Earth field)
- Trigger, spectrometer and muon-veto inefficiencies correlated with spectrometer B field
- Charge misidentification
- ullet Differential probability for π^{\pm} to interact with the spectrometer
- ullet Differential punch-trough probability for π^\pm

Total systematic uncertainty

$$\delta A_q(syst.) < 0.5 \cdot 10^{-4}$$

Limiting uncertainty given by statistics !!!

Statistics and Competition

Experiment	Decays	Statistics	δA_g (only stat.)
HyperCP (completed)	$K^{\pm} \to \pi^{+}\pi^{-}\pi^{\pm}$	$4.5 \cdot 10^8$	$6 \cdot 10^{-4}$
KLOE (one year)	$K^{\pm} \to \pi^{+}\pi^{-}\pi^{\pm}$ $K^{\pm} \to \pi^{o}\pi^{o}\pi^{\pm}$	$1.5 \cdot 10^8 \\ 0.6 \cdot 10^8$	$4.4 \cdot 10^{-4}$ $6.3 \cdot 10^{-4}$
OKA (one year)	$K^{\pm} \to \pi^{+}\pi^{-}\pi^{\pm}$ $K^{\pm} \to \pi^{o}\pi^{o}\pi^{\pm}$	$5.9 \cdot 10^9$ $5.2 \cdot 10^8$	$1.0 \cdot 10^{-4} \\ 1.3 \cdot 10^{-4}$
NA48 (one year)	$K^{\pm} \to \pi^{+}\pi^{-}\pi^{\pm}$ $K^{\pm} \to \pi^{o}\pi^{o}\pi^{\pm}$	$1.2 \cdot 10^{10} \\ 2.4 \cdot 10^{8}$	$0.7 \cdot 10^{-4} \\ 2.2 \cdot 10^{-4}$

Test runs 2001

Data taking in 2001 (~ 1 day) with separated K^+ and K^- beams: optimize the L1 and L2 TRIGGERS and check the BACKGROUND level

Asymmetry measured in 8 bins of p_K

$$A_g = (-1.7 \pm 7.1) \cdot 10^{-3}$$

No surprises!

Other channels

- CP symmetry can also be investigated in $K^\pm \to \pi^\pm \pi^o \gamma$ decays
- \bullet T symmetry can be investigated in $K^\pm \to \pi^o e^\pm \nu \gamma$ decays
- important χ PT parameters can be measured with $K_{e4},~K^{\pm}\to\pi^{\pm}\gamma\gamma$ decays
- ullet from $\mathrm{K}_{\mathrm{e}3}^{\pm}$ decays f_V, f_S, f_T can be extracted
- The beam can be easily operated also in K_L mode $\longrightarrow K_L \to \pi^+\pi^-\pi^o$ as control channel for $K^\pm \to (3\pi)^\pm$

Conclusions

The NA48 post- ϵ'/ϵ program is rich and promising:

2002 High Intensity K_S and neutral hyperon data taking 2003 Charged kaon K^\pm data taking

The new technique of simultaneous unseparated K^\pm beams will give NA48 a chance to observe direct CP violation again

The Measurement is expected to be limited only by statistics