

Outline

- ♦ Physics motivations
- ♦ NA48 beam and detector
- ♦ $\operatorname{Re}(\varepsilon'/\varepsilon)$ measurement on 2001 data
- \clubsuit Comparison with 97+98+99 value
- Combined result

Physics motivation

 $\varepsilon \Rightarrow$ Indirect CP violation via $K^0/\overline{K^0}$ mixing CP eigenstates:

$$\begin{aligned} &\zeta_1 = (\mathbf{K}^0 + \overline{\mathbf{K}^0})/\sqrt{2} \quad (CP = +1) \\ &\zeta_2 = (\mathbf{K}^0 - \overline{\mathbf{K}^0})/\sqrt{2} \quad (CP = -1) \\ &\pi^+\pi^-, \pi^0\pi^0 \quad (CP = +1) \end{aligned}$$

Mass eigenstates:

$$\begin{split} K_{\rm S} &\simeq K_1 + \varepsilon K_2 ~(c\tau_{\rm S} = 2.67 {\rm cm}) \\ K_{\rm L} &\simeq K_2 + \varepsilon K_1 ~(c\tau_{\rm L} = 15.5 {\rm m}) \\ \end{split}$$

 $\varepsilon = (2.27\pm0.02)\times10^-$

Physics motivation, contd.

 $\varepsilon' \Rightarrow \text{Direct CP violation from } K_0 \text{ decay}$ $\varepsilon' \sim 10^{-6}$

 ε'/ε affected by large theoretical uncertainties from -1×10^{-3} to about 4×10^{-3}

Experimental observable:

$$\operatorname{Re}(\varepsilon'/\varepsilon) \simeq \frac{1}{6} \left\{ 1 - \frac{\Gamma(K_{L} \to \pi^{0}\pi^{0})}{\Gamma(K_{S} \to \pi^{0}\pi^{0})} / \frac{\Gamma(K_{L} \to \pi^{+}\pi^{-})}{\Gamma(K_{S} \to \pi^{+}\pi^{-})} \right\} = \frac{1}{6} \left(1 - \mathbf{R} \right)$$

 $\rightarrow \text{Count: } N(\text{K}_{\text{L}} \rightarrow \pi^0 \pi^0), N(\text{K}_{\text{S}} \rightarrow \pi^0 \pi^0), N(\text{K}_{\text{S}} \rightarrow \pi^+ \pi^-),$ $N({
m K_L}
ightarrow \pi^+\pi^-)$

nakat taken

- **A**tisnetni better duty cycle, lower instantaneous 2001: 5.2 s every 16.8 s; $E_p = 400 \text{ GeV}$ Və
D 0 $dh =_q 3$; R 4.4 I View R 460 CeV 14.4 S; E
P = 450 CeV - Different beam conditions $^{0}\pi^{0}\pi \leftarrow {}_{d}X$ noillim $J \simeq$ 2001 93 days at 2.4×10^{12} ppp on K_L target 2000-2001 Drift chambers rebuilt 2000 Only neutral events for cross-checks four drift chambers damaged lls, equip in the carbon fiber beam pipe, all $^{0}\pi^{0}\pi \leftarrow _{1}X$ noillim $\Sigma \approx$ terget 100 128 days at 1.5×10^{12} ppp on K_L target $^{0}\pi^{0}\pi \leftarrow _{1}X$ noillim $1 \approx$ target $_{L}X$ no qqq 12 01 × $\stackrel{.}{}$.1 target 1998 Detector improvements to allow higher rates eeel ni benzilduq tluser $^{0}\pi^{0}\pi \leftarrow _{d}X$ noillim $\xi.0 \approx$ 1997 89 days at 1×10^{12} ppp on K_L target
- Lower dead time
 98-99: 20% DCH multiplicity; 1.5% trigger
 2001: 11% DCH multiplicity; 0.3% trigger

 K_S are distinguished from K_L by tagging the protons upstream of the K_S target

Tagging needed for neutrals, hence also used for charged

The NA48 Simultaneous K_S and K_L Beams

• Magnetic spectrometer: $K_{L,S} \rightarrow \pi^+ \pi^ \sigma(p)/p \simeq 0.5 \% \oplus 0.009 p[GeV/c] \%$ $K_{L,S} \rightarrow \pi^0 \pi^0$ $\sigma(E)/E = 3.2\%/\sqrt{E} \oplus (9\%)/E \oplus 0.42\%$ high granularity (13212 2 × 2 cm² cells) $\sigma(E)/E = 3.2\%/\sqrt{E} \oplus (9\%)/E \oplus 0.42\%$ $\sigma(E)/E = 3.2\%/\sqrt{E} \oplus (9\%)/E \oplus 0.42\%$

rotostsa 84AN

Technique

- ♦ Employ two almost collinear neutral beams
- ♦ Collect the four decay modes simultaneously, in the same detector and from the same decay region
- Distinguish K_S and K_L events by tagging the protons upstream of the K_S target
- ◆ Record dead time conditions and apply them offline to all events
- according to the ratio of K_S/K_L decay intensities as a function of \clubsuit Keep the acceptance correction small by weighting the K_L events proper time
- Use precise and stable calorimetry to control the energy scale
- Perform the analysis in bins of kaon energy •
- ♦ Subtract the small backgrounds
- Check accidental losses due to different beam intensities
- \blacklozenge Account for K_S/K_L variations
- The first 200 ms where not used for the 2001 analysis due to the very strong beam structure

tu = measurement for the two sets the two

$$\%(010.0 \pm 311.8) = {}^{-+}_{2.1} \omega$$

(92-80 ni \%(800.0 \pm 940.01) = {}^{-+}_{2.1} \omega sew)

♦ K_S ⇒ K_L misidentification is due to
inefficiencies
$$\alpha_{SL}^{+-} = (1.12 \pm 0.003) \times 10^{-4}$$

A sensitive to the asymmetries in tagging $\pi^0 \pi^0 \pi$ but $\pi^- \pi^- \pi$ newted noitesitine misidentification between $\pi^- \pi^- \pi^- \pi^0 \pi^0 \pi^0$ $\alpha_{LS}^{0} - \alpha_{LS}^{+-} = (0.034 \pm 0.0014)\%$

$$\omega^{(\pm 100.0 \pm \pm 50.0)} = \frac{1}{2} =$$

 $K \rightarrow \pi^0 \pi^0$ reconstruction

• Vertex position along beam line found by imposing the Kaon mass

 $D = Z^{\Gamma K \iota} - Z^{q \in con} = \sqrt{\sum (E^i E^j \times \iota^j)_{2}} \ / M^K$

mə 0
đ \approx noitulosər $_{xtu} Z$

 \Rightarrow Correlation between Z_{vtx} and energy scale

- K_S Decay volume defined sharply by AKS
 vetoed
- Reconstruct correct AKS position to adjust energy scale (and verify DCH alignment)

риполвягор расквиони

The background in $K_L \to \pi^+\pi^-$ is dominated by

 \rightarrow cut on transverse momentum \rightarrow cut on transverse momentum \rightarrow cut on transverse momentum is evaluated from a fit to the control regions

 \Rightarrow Background level = (14.2 ± 3.0) × 10⁻⁴

semileptonic decays

punoibying packground

 \clubsuit Photons are paired to give the best π^0 mass combination

 \clubsuit Main background comes from $K_L \to 3\pi^0$

 \rightarrow Background level : (5.6 \pm 2.0) 10^{-4}

07

50

0

201

۰0ı

09

Signal region

Control region

<mark>s</mark>к

80 100 150 x

ג^ר

Acceptance correction

- \blacklozenge At same z, acceptance $K_S = K_L$
- \clubsuit K_S and K_L different lifetimes
- \Rightarrow decay distributions vary strongly along beam
- \clubsuit K_L distribution weighted by function of proper time to minimize acceptance correction
- ♦ Analysis now relatively insensitive to MonteCarlo simulation but with 35% increase of the statistical error

ytivitən İntrahiəəA

- Accidental activity from beam
- It cancels at first order on R
- Residual effects:

Intensity difference $\Delta R \sim \Delta \lambda (\pi^{+}\pi^{-} - \pi^{0}\pi^{0}) \rightarrow \text{difference between}$ $\Rightarrow \Delta \lambda (\pi^{+}\pi^{-} - \pi^{0}\pi^{0}) \rightarrow \text{difference between}$

charged and neutral losses and the best griving the best from the best of the provided by applying dead time conditions to all more than the provided by a specific the provided by the provi

♦ $\Delta I(K_L - K_S)/I \rightarrow \text{difference in accidental}$ activity seen by K_S and K_L small by design of the experiment because of simultaneous beams $\Delta I(K_L - K_S)/I = 0 \pm 1\%$

Illumination difference

• Different losses in different detector sections due to different $K_S - K_L$ illumination \rightarrow minimized by lifetime weighting $M_{-4} = (0 \pm 3) \times 10^{-4}$

Accidental activity

$$K_{L} \to \pi^{0}\pi^{0} : 1.55 \times 10^{6} K_{L} \to \pi^{0}\pi^{0} : 2.16 \times 10^{6} K_{L} \to \pi^{+}\pi^{-} : 7.14 \times 10^{6} K_{L} \to \pi^{+}\pi^{-} : 7.14 \times 10^{6} K_{L} \to \pi^{+}\pi^{-} K_{L} \to 0.01 \times 10^{6} K_{L} \to 0.01 \times$$

solitatistics: 2002

soutents thous

suoitiento fo himmung

Corrections on R and systematic uncertainties $(\text{units } 10^{-4})$

$9.6 \pm$	$0.6 \pm$	
$1.8 \pm 9.56+$	$35.0 \pm 0.35 +$	IIV
0.1±	$0.1\pm$	${ m Yivitys}$ setivity ${ m R}$
± 3.0	± 3.0	flib noitsnimulli
± 3.0	I.I±	fib ytiznətni
		Accidental event losses:
-3.6 ± 5.2	5.2 ± 3.6	.эШэпі тэздіті $-\pi^+\pi$
0.4±	0. 4 ±	
56.7± 4.1	21.9 ± 3.5	Accept. corr.
₽.0 ±1.1	1.2± 0.3	үэпөіэтелі ZXA
8. č ±	± 5.3	noitourtenosor $^{0}\pi^{0}\pi$
2.0 ± 2.8	± 2.8	noitourtznoo $ = \pi^+ \pi$
4.3 ± 3.4	6.9 ± 2.8	gniggst lstnebiccA
± 3.0	± 3.0	.эffləni gniggsT
-6.6 ± 2.0	-8.8 ± 2.0	beam scatt. backgr.
-5.9 ± 2.0	-5.6 ± 2.0	μ ₀ μ ₀ packground
0.5 ±9.01	14.2 ± 3.0	$\pi^+\pi^-$ background
66-86	1002	Source

sysəyə sittməts h_S

Precise evaluation of systematics to 10^{-4} level is essential

R stability against cut variations

 $Re(\varepsilon'/\varepsilon) = (13.7 \pm 3.1) \times 10^{-4} (2001)$ $Re(\varepsilon'/\varepsilon) = (15.3 \pm 2.6) \times 10^{-4} (97+98+99)$ $Re(\varepsilon'/\varepsilon) = (14.7 \pm 2.2) \times 10^{-4} (97+98+99+01)$

tines (3/'3)9A 84 M InniA

stiusər (3/3)9A