

CPV and the Standard Model

CP Violation in $D^{(*)}\overline{D}^{(*)}$

- > Time-dependent CP-violating asymmetry from tree amplitude is proportional to $sin(2\beta)$, penguin amplitude can however add different phase.
- Phase correction due to penguins expected to be small in SM (< 0.1 correction to measured sin(2β)[†]) however supersymmetry & other loop-enhancing models can produce large corrections.

$$a_{f_{CP}} = \frac{\Gamma(B^0_{\text{phys}}(t) \to f_{CP}) - \Gamma(\overline{B}^0_{\text{phys}}(t) \to f_{CP})}{\Gamma(B^0_{\text{phys}}(t) \to f_{CP}) + \Gamma(\overline{B}^0_{\text{phys}}(t) \to f_{CP})}$$

$$\approx -\eta_{\text{eff}} \sin(2\beta) \sin(\Delta m \Delta t)$$

2

[†]Grossmann & Worah, Phys. Lett. **B395**, 241 (1997)

6/19/2002 *CP* Asymmetry in $D^{*+}D^{(*)-}$ **J. Albert**

D*+D(*)- Event Selection

- $D^{*\pm}$ reconstructed to both $D^{0}\pi^{\pm}$ and $D^{\pm}\pi^{0}$
 - ! for $B^0 \rightarrow D^{*+}D^{*-}$: eliminate case where both D^* decay to $D^{\pm}\pi^0$
- $D^0 \to K^- \pi^+, \ K^- \pi^+ \pi^0, \ K^- \pi^+ \pi^- \pi^+, \ K_{\rm S} \pi^+ \pi^-$
- $D^+ \rightarrow K^- \pi^+ \pi^+, K_S \pi^+, K^- K^+ \pi^+$
 - Form "mass likelihood" from the masses of the D candidates and ∆m of D* candidates:

D*+D(*)- Event Selection (II)

D*+**D***-

Beam-energy substituted B mass:

$$m_{\rm ES} = \sqrt{\left(\sqrt{s}/2\right)^2 - p_{\rm B}^{*2}}$$

$$\Delta E = E_B^* - \sqrt{s}/2$$

- m_{ES} and ΔE signal region sizes tuned (using Monte Carlo simulation) to maximize Signal²/(Signal+Background).

 - > m_{ES}: 10 MeV ½-width

*D**±*D*∓

J. Albert

4

ois XIV 6/19/2002

2 *CP* Asymmetry in $D^{*+}D^{(*)-}$

$D^{*+}D^{*-} \& D^{*\pm}D^{\mp}$ Data Samples (56 fb⁻¹)

Fully Reconstructed **B**⁰→ **D**^{*}±**D**[∓]

$D^{(*)}\overline{D}^{(*)}$ - specific CP issues

D*D final states are not CP eigenstates:

D*+D*- Angular Distribution

The angular distribution as a function of one angle, θ_{tr} :

$$\frac{1}{\Gamma} \frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta_{tr}} = \frac{3}{4} (1 - R_t) \sin^2\theta_{tr} + \frac{3}{2} R_t \cos^2\theta_{tr}$$

We measure $\cos \theta_{tr}$ and we can determine R_t from the distribution by using a maximum likelihood fit method...

Perform full fit on **38** events (from 20.7 fb⁻¹ of data) in the signal region... (input to fit is the purity of sample and value of R_t^{bkg}).

6/19/2002

CP-odd fraction $R_t = 0.22 \pm 0.18 \pm 0.03$

ois XIV

CR Measurement at the $\Upsilon(4S)$

Δt Measurement and Resolution

Likelihood Fit Method

Signal PDFs:

= asymmetries

) = tagging dilutions ($\omega \equiv$ mistag frac.)

$$\Gamma\left(\overset{(-)}{B^{0}}\rightarrow D^{*+}D^{*-}\right) = e^{-\Gamma t}A^{2}\left\{1\overset{(+)}{-(1-2\omega)}C_{D^{*+}D^{*-}}\cos(\Delta m_{d}t)\overset{(+)}{-(1-2\omega)}S_{D^{*+}D^{*-}}\sin(\Delta m_{d}t)\right\}\otimes R$$

$$\Gamma\left(\stackrel{(-)}{B^{0}}\rightarrow D^{*-}D^{+}\right) = e^{-\Gamma t}\overline{A^{2}}\left\{1\stackrel{(+)}{-}\left(1-2\omega\right)C_{D^{*-}D^{+}}\cos(\Delta m_{d}t)\stackrel{(+)}{-}\left(1-2\omega\right)S_{D^{*-}D^{+}}\sin(\Delta m_{d}t)\right\}\otimes R$$

$$\Gamma\left(\stackrel{(-)}{B^{0}}\rightarrow D^{*+}D^{-}\right) = e^{-\Gamma t}\overline{\overline{A}^{2}}\left\{1\stackrel{(-)}{+}1-2\omega\right]C_{D^{*+}D^{-}}\cos(\Delta m_{d}t)\stackrel{(+)}{-}1-2\omega]S_{D^{*+}D^{-}}\sin(\Delta m_{d}t)\right\}\otimes R$$

$$\Gamma\left(\stackrel{(-)}{B^{0}}\rightarrow D^{*}\pi, etc.\right) = e^{-\Gamma t}\overline{\overline{A}^{2}}\left\{1\stackrel{(+)}{-}1-2\omega\right]\cos(\Delta m_{d}t)\right\}\otimes R \quad (and (1-2\omega))$$

Blois XIV 6/19/2002 CP Asymmetry in D^{*+}D^{(*)-} J. Albert 10

Likelihood Fit Method (II)

Combined maximum likelihood fit to D*+D*- and D*D events as well as B mixing events of definite flavor in order to extract the following parameters:

CP Asymmetry in $D^{*+}D^{(*)-}$

B lifetime fixed (PDG2000 value) $t_B = 1.548$ ps

6/19/2002

Mixing freq. fixed (PDG2000 value) $\Delta m_d = 0.472 \text{ ps}^{-1}$

J. Albert 11

Fit Results (56 fb⁻¹ of data)

Note: statistics are limited. (An update with ~85 fb⁻¹ will be done this summer.)

Blois XIV 6/19/2002 CP Asymmetry in D^{*+}D^{(*)-} J. Albert 12

Fit Results (56 fb⁻¹ of data) (II)

$$\sim C_{D^*+D^*-} = 0.12 \pm 0.30_{(stat.)} \pm 0.05_{(syst.)}$$

- > $S_{D^*+D^*-} = -0.05 \pm 0.45_{(stat.)} \pm 0.05_{(syst.)}$
- > $C_{D^*-D^+} = -0.30 \pm 0.50$ (stat.) ± 0.13 (syst.)
- > $S_{D^*-D^+} = 0.38 \pm 0.88_{(stat.)} \pm 0.12_{(syst.)}$
- \succ C_{D*+D} = 0.53 ± 0.74_(stat.) ± 0.15_(syst.)
- > $S_{D^*+D^-} = -0.43 \pm 1.41_{(stat.)} \pm 0.23_{(syst.)}$

Blois XIV 6/19/2002 CP Asymmetry in $D^{*+}D^{(*)-}$ J. Albert 13

Systematic Errors

Although systematics are small compared with statistical errors, they are fully \succ evaluated (both $D^{*+}D^{*-}$ and $D^{*\pm}D^{\mp}$):

$D^{*+}D^{*-}$ signal Δt resolution function 0.008 0.003 tagging dilution 0.005 0.005 peaking background 0.003 0.009	
$D^{+}D^{-}$ tagging dilution 0.005 0.005 peaking background 0.003 0.009	
DTD peaking background 0.003 0.009	
CP background content 0.022 0.038	
(List of systematics lifetime of background 0.034 0.005	<u> </u>
is similar for $D^{\star}D^{\tau}$ B^0 lifetime variation 0.001 0.001	
Δm_d variation 0.030 0.022	—
SVT misalignment 0.011 0.008	
Boost uncertainty 0.002 0.001	
Fit bias 0.001 0.004	
TOTAL 0.053 0.046	

6/19/2002 *CP* Asymmetry in $D^{*+}D^{(*)-}$

J. Albert 14

Conclusion

CP-violating asymmetries in $B^0 \rightarrow D^{*+}D^{(*)-}$:

is XIV

- > This is the first measurement of *CP* violation in the quark process $b \rightarrow c\overline{c}d$.
- > These modes provide an alternative physics process for determining $\sin(2\beta)$.
- Furthermore, the difference between $\sin(2\beta)$ in $D^{(*)}\overline{D}^{(*)}$ and $\sin(2\beta)$ in $J/\psi K_{S/L}$ is sensitive to *CP* violation beyond the Standard Model (notably *CP* violation in supersymmetry).
- Statistics are low at present, but BaBar expects to collect 10 times these statistics in the next 4 years

 \Rightarrow > 3-fold reduction in errors by 2006

 \Rightarrow constraints on *CP* violation in SUSY.

6/19/2002 *CP* Asymmetry in $D^{*+}D^{(*)-}$ **J. Albert 15**

Backup Slides

B Flavor Tagging

The **charge** of electrons, muons, and kaons (that are not part of the reconstructed *B*) is correlated with whether the second *B* in the event was a B^0 or \overline{B}^0 at the time of decay.

This is needed for determining the time-dependent *CP* asymmetry.

