Towards $sin(2\alpha)$ with BABAR

David Kirkby, UC Irvine On behalf of the BABAR Collaboration

XIVth Rencontres de Blois 19 June 2002 080

The CKM Matrix & Unitarity Triangle Cabibbo-Kobayashi-Masakawa matrix U of W[±] couplings to quarks is unitary U⁺U = 1:

$$\begin{pmatrix} V_{ud}^{\star} & V_{cd}^{\star} & V_{td}^{\star} \\ V_{us}^{\star} & V_{cs}^{\star} & V_{ts}^{\star} \\ V_{ub}^{\star} & V_{cb}^{\star} & V_{tb}^{\star} \end{pmatrix} \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\Rightarrow \mathsf{V}_{\mathsf{ud}}\,\mathsf{V}_{\mathsf{ub}}^{\star} + \mathsf{V}_{\mathsf{cd}}\,\mathsf{V}_{\mathsf{cb}}^{\star} + \mathsf{V}_{\mathsf{td}}\,\mathsf{V}_{\mathsf{tb}}^{\star} = \mathbf{0}$$

CP violation in SM due to single observable phase of CKM matrix ~ invariant area of unitarity triangles.

 $sin2\beta = 0.78\pm0.08$

Penguins & Trees

Two general classes of weak diagrams describe main contributions to decay amplitudes:

Isospin Analysis

The 3 B⁰, B⁺ $\rightarrow \pi\pi$ amplitudes proceed via 2 isospin amplitudes A₀, A₂: $A(B^0 \rightarrow \pi^0\pi^0)$

 $\overline{B}^{0}, B^{-} \rightarrow \pi\pi$ proceed via the CP-conjugated $\overline{A}_{0}, \overline{A}_{2}$:

 $|A(B^- \rightarrow \pi^-\pi^0)| = |A(B^+ \rightarrow \pi^+\pi^0)|$

Measurements of 5 time-averaged rates fix the lengths of each side & therefore determine interior angles but <u>not</u> relative orientation of triangles.

 $A(B^- \rightarrow \pi^-\pi)$

Towards $sin(2\alpha)$, D. Kirkby, Rencontres de Blois, June 2002

 $A(B^+ \rightarrow \pi^+\pi^0)$

 $A(\overline{B^0} \rightarrow \pi^+\pi^-)/\sqrt{2}$

 $A(\overline{B}^0 \rightarrow \pi^0 \pi^0)$

Putting it all Together

The interior angles of the 2 isospin triangles do not directly measure α .

The relative mixing-decay phase α_{eff} also does not directly measure α .

Instead, α_{eff} fixes the relative orientation of the isospin triangles necessary to directly determine α :

Select 2-Body B Decays

Identify candidate 2-body B decays with expected invariant mass and CM energy, e.g. for $B^0 \rightarrow h^+h^-$ (h=K, π)

Use similar techniques for B decays to K⁰ ($\rightarrow \pi^+\pi^-$), π^0 ($\rightarrow \gamma\gamma$)

Continuum Backgrounds

Dominant B decays to charm final states removed by 2-body requirement. Main background is therefore due to continuum hadronic final states:

 $e^+e^- \rightarrow \gamma \rightarrow q\bar{q} \rightarrow jets$

Use event shape variables to distinguish jet-like events (BG) from more spherical $Y(4S) \rightarrow BB$ events.

E.g. weighted momentum flow ("Fisher discriminant")

Use m_{ES} , $\triangle E$ sidebands in data for BG characterization.

Fisher discriminant

Kaon-Pion Discrimination

 $B^0 \rightarrow \pi^+\pi^-, K^+\pi^-, K^+K^-$ decays cannot be disentangled cleanly using kinematics alone. Use angle of Cerenkov emission $\cos\theta_c = 1/n\beta$ in quartz bars to distinguish K^\pm, π^\pm of known momentum:

Preliminary Branching Ratio Results

Fit distributions of signal candidates with shapes fixed by sideband data (BG) and MC (signal) to obtain yields from $60M Y(4S) \rightarrow BB$ decays recorded by BABAR (2000-01).

E.g., a selection of results most relevant to $sin(2\alpha)$:

	Mode	Yield	BR (x10 ⁻⁶)
isospin analysis {	$B^0 \rightarrow \pi^0 \pi^0$	9.8±8.7	< 3.4 (90%CL)
	$B^{*} ightarrow \pi^{*}\pi^{0}$	62 ⁺¹⁷ -16 ⁺¹⁰ -11	4.1 +1.1 -1.0 +0.8 -0.7
strong f phase f (penguin amplitude)	$B^{0} \rightarrow \pi^{+}\pi^{-}$	124 ⁺¹⁶ -15	5.4 ±0.7 ±0.4
	$B^{0} \rightarrow K^{+}\pi^{-}$	403 ±24	17.8 ±1.1 ±0.8
	$B^{\scriptscriptstyle +} o K^{0} \pi^{\scriptscriptstyle +}$	172 ±17 ±9	17.5 ^{+1.8} -1.7 ±1.8

Main systematic uncertainties: assumed distributions for θ_c ($\pi^+\pi^-$, $K^+\pi^-$), m_{ES} ($\pi^+\pi^0$), ΔE ($K^0\pi^+$) and Fischer discriminant ($K^0\pi^+$, $\pi^+\pi^0$).

Separation of B⁰ and B⁰ Decays to $\pi^{+}\pi^{-}$ In order to be sensitive to CP violation, must separately analyze B⁰, B⁰ decays.

Use charge correlations between parent b-quark and primary decay products to "flavor tag" events:

- b \rightarrow cl⁻ v (e⁻, μ ⁻)
- b \rightarrow c \rightarrow s (K-)

			<mark>ک</mark>	ω	-2ω
		Tagging Category	Efficiency on Signal	Prob. Of Wrong Tag	Overall Quality Factor
category hierarchy	Identified K,e, μ	Lepton	11.1%	8.6%	8%
		Kaon	34.7%	18%	14%
	Inclusive Neural (Network analysis (NT1	7.6%	22%	2%
		NT2	14.0%	37%	1%

Measured with independent control sample 리

Measurement of B Decay Time Difference

Use boost of asymmetric-energy collisions to estimate B decay-time difference $\Delta t \sim \Delta z / (c\beta\gamma)$:

Main systematic uncertainty: shape of θ_c distributions.

Interpretation of Results

Results of time-dependent $B^0 \rightarrow \pi^+\pi^-$ analysis are consistent with Standard Model expectations.

E.g., take
$$\alpha = (97^{+30}_{-21})^{\circ}$$

|P/T| = 0.28, $|\delta| < \pi$:

(following Gronau, Rosner in hep-ph/0202170)

Unitarity limit:

$$C_{\pi\pi}^{2} + S_{\pi\pi}^{2} \leq 1$$

Summary & Prospects

BABAR has studied complete set of $B^0, B^+ \rightarrow h'h$ decays (h',h= π^{\pm} , π^0, K^{\pm}, K^0). Results are generally in good agreement with CLEO & BELLE.

Results obtained with 60M Y(4S) \rightarrow BB decays are statistics limited. Errors expected for summer (~95M) will be ~35% smaller.

Much larger samples required for separate rate measurements of $B^0\to\pi^0\pi^0$, $\overline{B^0}\to\pi^0\pi^0$:

flavor tagging eff. Rate ~ 18% × 10% × (<3.4×10⁻⁶) = O(10⁻⁸) reconstruction eff. branching ratio

We expect to record ~500/fb by 2006 with projected error on α ~ 30° (SLAC-PUB-8970).