

CPV in DK decays of B-mesons

~ Observation of the Decay $B^- \rightarrow D_{CP}K^-$ ~

XIV th RECONTRES DE BLOIS

Takahiro Matsumoto

Tokyo Metro. Univ., Japan

For Belle Collaboration

Jun 19th, 2002

Introduction

- Goal of B-factory project
 - Understanding of CP violation.
 - Measurement of UT is essential.
 - accurately, many aspects...
- B⁻ → DK⁻
 - Sensitive to $\phi_3(\gamma)$
 - Theoretically clean method.
 - Use direct CP asymmetry
 - $B^- \rightarrow D_{CP}K^-$
 - Target NOW!
 - $B^- \rightarrow D^0 (\rightarrow K^+ \pi^-) K^- (DCSD)$
 - Large CPV(?)
 but Br ~ O(10⁻⁷).

- $B^- \rightarrow DK^-/D\pi^-$ separation
 - Large backgrounds from Cabibbo-favored decay, ${\rm B}^{\scriptscriptstyle -} \not \to {\rm D}\pi^{\scriptscriptstyle -}$

R =Br($B^- \rightarrow D^0 K^-$)/Br($B^- \rightarrow D^0 \pi^-$) = 0.079± 0.009± 0.006

[Belle, PRL87, 111801(2001)]

- c.f. Naïve expectation : R ~ $(f_K/f_\pi)^2 \tan \theta_C^2 \sim 0.074$ (f_K , f_π : form factor, θ_C : Cabibbo angle)
- Due to similar topology, K/π separation at high momentum range (1.5 < P < 3.5 GeV/c) is very important.
- Small decay rate
 - − $B^- \rightarrow D^0 K^-$: Cabibbo-suppressed mode ($Br \sim 4x10^{-4}$).
 - D_{CP} decay rate is small (Br <~ 1%).

 \rightarrow High B statistics is required.

Jun 19th, 2002

Experimental apparatus

- KEKB accelerator
 - >80fb⁻¹ data with the world record luminosity, 7.2x10³³cm⁻²s⁻¹
 - This analysis uses 29.1 fb⁻¹ data (31.3 million \overline{BB})

Jun 19th, 2002

Analysis

• Reconstructed Modes : $B^- \rightarrow DK^-/D\pi^-$ (+ c.c. modes)

Flavor specific	$D_f \rightarrow K^- \pi^+$
CP= 1	$D_1 \rightarrow K^-K^+, \pi^-\pi^+$
CP= -1	D ₂ \rightarrow K _S π ⁰ , K _S ω, K _S φ, K _S η, K _S η'

• B reconstruction

Use **DE** after cutting on M_{Ic}

$$- M_{lc} = \sqrt{(E^{lab}_B)^2 - (P^{lab}_B)^2}$$

- σ~2.8 MeV/c²
- $5.27 < M_{lc} < 5.29 \text{ GeV/c}^2$
- $\Delta E = E^{cm}_{D} + E^{cm}_{h} E^{cm}_{beam}$
 - h : pion assumption

800 $B^{-} \rightarrow D^{0}\pi^{-}$ Events/ 10 MeV 700 $\mu \sim 0, \sigma \sim 12 \text{ MeV}$ 600 500 →DºK-400 300 $\mu \sim -49$, $\sigma \sim 16$ MeV 200 100 0 -0.2 -0.1 0.1 0.2 0 ΔE (GeV)

Jun 19th, 2002

Background suppression

- Continuum suppression ($\sigma(q\overline{q})/\sigma(B\overline{B})\sim3$)
 - $LR(F,cos\theta_B) = L_{sig}/(L_{sig}+L_{cont})$
 - F: Fisher discriminant with SFW
 - SFW: use jet topology
 - $cos\theta_B$: B flight direction

ex) LR>0.4 : ε(sig) = 87.1%, ε(cont) = 26.4%

- Veto for B decays
 - $B^- \rightarrow D^0 \pi^-, J/\Psi K^-$
 - For $B^- \rightarrow D_1(\rightarrow \pi^+\pi^-)h^-$, veto $M(h^-\pi^+)$ around $M(D^0)$, $M(J/\Psi)$
 - Non D_{CP} component
 - D \rightarrow VP mode : veto on helicity angle, $|\cos\theta_{hel}| > 0.4$
 - $D \rightarrow K_S \omega$: veto $M(K^{*-}(\rightarrow K_S \pi^{-}))$ to reduce $D^0 \rightarrow K^{*-} \rho^+$

Jun 19th, 2002

$B^{-}\rightarrow DK^{-}/D\pi^{-}$ separation

$B^- \rightarrow D_{CP}K^-$ results

B⁻ → D π^- [P(K/ π) < 0.8] B⁻ → DK⁻ [P(K/ π) > 0.8]

ASYMMETRY @ Blois, France

$B^{-}\rightarrow DK^{-}/D\pi^{-}$ Ratio

- $R = Br(B^- \rightarrow DK^-)/Br(B^- \rightarrow D\pi^-)$ PID eff. [$\epsilon(\pi) = 0.972, \epsilon(K) = 0.778$]
 - = N(DK⁻)/N(D π ⁻) x η (D π ⁻)/ η (DK⁻) x $\varepsilon(\pi)/\varepsilon(K)$

Detection eff. [~1.05 due to Kaon decay in flight]

Consistent with previous value, R=0.079± 0.009± 0.006

Prelimin

	N(DK⁻)	N(Dπ ⁻)	R
$B^- \rightarrow D_f h^-$	161.7±14.5	2245.1±51.0	0.094±0.009±0.007
B⁻ → D₁h⁻	22.9±6.1	240.1±16.7	0.125±0.036±0.010
$B^- \rightarrow D_2h^-$	26.1±6.5	290.6±19.1	0.119± 0.028±0.006

- Ratios for D_{CP} agree well with flavor specific's one.

Direct CPV

•
$$A_{CP} = \frac{Br(B^- \rightarrow DK^-) - Br(B^+ \rightarrow DK^+)}{Br(B^- \rightarrow DK^-) + Br(B^+ \rightarrow DK^+)}$$

– Obtained from ΔE fit for B⁻/B⁺ samples

	N(B ⁻)	N(B ⁺)	A _{CP}	90% C.L.
B±→D1K [±]	14.7 ±4.6	8.1 ± 3.9	$0.29 \pm 0.26 \pm 0.05$	$-0.14 < A_1 < 0.73$
B±→D₂K±	10.6±4.2	16.4 ±4.2	$-0.22 \pm 0.24 \pm 0.04$	-0.62 < A ₂ < 0.18

- Consistent with zero asymmetry.

c.f. Calibration mode : $A_{CP}(B^{\pm} \rightarrow D_f \pi^{\pm}) = -0.036 \pm 0.021$

Jun 19th, 2002

Systematic errors

- Sources for systematic errors :
 - R : Most uncertainties cancel in the ratio

 signal, background shape 	: 5.1–7.9%
• K/π ID eff.	: 1.2%
Total	5.2 - 8.0%
A _{CP}	
 background shape 	: 1.5 – 3.9%
• Intrinsic asymmetry (from $A_{CP}(B^{\pm} \rightarrow B)$	D _f π⁺)): 3.6%
• KID eff.	: 1.0%
 Non D_{CP} component 	: ~ 0.1%
Total	4.0 - 5.4%
Statistical error still dominates	

Jun 19th, 2002

Toward ϕ_3

• CPV, CP av. Br in $B^- \rightarrow D_{CP}K^- \rightarrow constrain \phi_3$

 $\begin{array}{l} A_{1,2} = 2r\,\sin\!\delta'\,\sin\!\varphi_3\,/\,(\,1\,+\,r^2\,+\,2r\,\cos\!\delta'\,\cos\!\varphi_3\,) \\ R_{1,2} = R(D_{1,2})\,/\,R(D_f) = 1\,+\,r^2\,+\,2r\,\cos\!\delta'\,\,\cos\!\varphi_3 \end{array}$

r = $|A(B^- \rightarrow \overline{D^0}K^-)/A(B^- \rightarrow D^0K^-)| \sim 0.1$ (naïve expectation)

$$\delta' = \delta$$
 (CP=1), $\delta + \pi$ (CP=-1)

- − assuming No D⁰- $\overline{D^0}$ mixing, No CPV in B⁻→D π^-
- Current results \rightarrow Consistent with no interference (i.e. $A_i = 0, R_i = 1$)

$A_1 = 0.29 \pm 0.26 \pm 0.05$	$A_2 = -0.22 \pm 0.24 \pm 0.04$
$R_1 = 1.33 \pm 0.37 \pm 0.12$	$R_2 = 1.27 \pm 0.29 \pm 0.09$

- 300fb⁻¹ data : δ(A_i,R_i) <~0.1→ Interesting results will be extracted!
 (will be available before 2005)

Jun 19th, 2002

Summary

- First observations of B⁻ → D_{CP}K⁻, will be used to measure φ₃ in unitarity triangle.
- First measurement of CPV in B⁻ → D_{CP}K⁻.
 We started to constrain these variables.

 $\begin{array}{rll} \mathsf{A}_1 = & 0.29 \pm 0.26 \pm 0.05 & -0.14 < \mathsf{A}_1 < 0.73 \\ \mathsf{A}_2 = & -0.22 \pm 0.24 \pm 0.04 & -0.62 < \mathsf{A}_2 < 0.18 \\ \mathsf{R}_1 = & 1.33 \pm 0.37 \pm 0.12 \end{array} \begin{array}{l} 90\% \ \mathsf{C.L.} \end{array}$

 $R_2 = 1.27 \pm 0.29 \pm 0.09$

Preliminary

Improved measurement will be expected with more recorded data.

~300 fb⁻¹ data : $\delta(A_i, R_i) < -0.1$