

Ping Yeh National Taiwan University

for the

Belle Collaboration

XIV th Rencontres de Blois Matter Anti-Matter Asymmetry Château de Blois, France 16 – 22 June 2002

Introduction
 DCPV: ππ/Kπ, ωπ/ωK, η^(')/πK^(*)
 Time-dependent CPV of η'K_S
 Summary and Outlook

- Rare B decays are useful in determination of the unitary triangle.
- Test of current understanding of B physics.
- Search for CP violation and probe new physics.

- Sizable Penguin amplitudes for most modes
 - Penguin-Tree interference
 Possible direct CP violation

$$A_{CP} = \frac{\Gamma(\overline{B} \to \overline{f}) - \Gamma(B \to f)}{\Gamma(\overline{B} \to \overline{f}) + \Gamma(B \to f)}$$

=
$$\frac{2|P||T|\sin(\Delta \phi)\sin(\Delta \delta)}{|P|^2 + |T|^2 + 2|P||T|\cos(\Delta \phi)\cos(\Delta \delta)}$$

Δφ(Δδ): weak(strong) penguin-tree phase difference
 b-quark convension

- "pure" Penguin modes: $\phi K^{(*)}$, $K^0 \pi$
 - Negligible direct CP violation in Standard Model
 Probe new physics!

- Clear K/p separation is essential in identifying final states of B meson decay
 - DK/Dπ, ωK/ωπ, ππ/Kπ/KK, ...etc

Κ*γ/ργ

$$PID(K) = \frac{L(K)}{L(K) + L(\pi)} \quad \sim 1 \Longrightarrow \mathsf{K}$$
$$\sim 0 \Longrightarrow \pi$$

• Calibration:

with $D^{*+} \rightarrow D^0 \pi^+$, $D^0 \rightarrow K^- \pi^+$

Signature: reconstructed B meson mass and energy

- Separate jet-like and B-like events.
- Event shape variables:
 - Sphericity
 - Super Fox-Wolfram moments
 - Reconstructed B flight direction
 - Angle between thrust axis and other particles

 $e^+e^- \rightarrow q \,\overline{q}$

 $e^+ e^- \rightarrow Y(4S) \rightarrow B \overline{B}$

K

π

Updated measurements with 31.7M BB

- Continuum suppression optimized for each mode
- Feed-across background from charmless B decays studied carefully

⇒ fit systematics well controlled

Matter Anti-Matter Asymmetry June 16-22, 2002 @ Blois France

Braching fractions ratios: (A) $2BF(K^{+}\pi^{0})/BF(K^{0}\pi^{+}) = 1.33\pm0.33\pm0.14$ (B) $BF(K^+\pi^-)/BF(K^0\pi^0) = 1.43\pm0.60\pm0.28$ (C) τ_{+}/τ_{0} BF(K⁺ π^{-})/2BF(K⁰ π^{+}) $= 1.27 \pm 0.23 \pm 0.09 \pm 0.04$ (D) $BF(\pi^+\pi^-)/BF(K^+\pi^-) = 0.24\pm0.06\pm0.02$ (E) $\tau_{+}/\tau_{0} BF(\pi^{+}\pi^{-})/2BF(\pi^{+}\pi^{0})$ $= 0.40 \pm 0.15 \pm 0.05 \pm 0.01$ \neq 1 (~ 4 σ effect) Evidence for large interf. in $\pi\pi$ system

Favors large ϕ_3 , but still consistent with indirect determinations

BF ratios vs ϕ_3 (QCD factorziation) Beneke, Buchalla, Neubert, Sachrajda hep-ph/0104110

Matter Anti-Matter Asymmetry June 16-22, 2002 @ Blois France

- Test current model of B decays
- Penguin-Tree interference \Rightarrow DCPV?
- The $\omega(782)$ vector meson dominantly decays to $\pi^+\pi^-\pi^0$ (88.8%)

Intriguing history of measurements by CLEO and now Babar/Belle

$\begin{array}{c} & \textbf{B} \rightarrow \omega \textbf{K} \text{ Branching Fraction and} \\ & \textbf{Direct A}_{CP} \end{array}$

Matter Anti-Matter Asymmetry June 16-22, 2002 @ Blois France

- The BFs for B → η' K and B → η K^(*) are unexpectedly large: first discovered by CLEO then confirmed by Belle and BaBar.
 - New Physics?
 - Possible direct CP violation from Penguin-Tree interference

$$(P \propto V_{tb}V_{ts}^* \sim \lambda^2, T \propto V_{ub}V_{us}^* \sim \lambda^4)$$

- $B \rightarrow \eta \pi^+$ may have large DCPV (Rosner *et. al.*)
- Studying both BF and A_{CP} enables determination of Δδ and φ₂. (Chiang & Rosner, hep-ph/0112285)

• Belle found the first evidence of $B^+ \rightarrow \eta K^+$ and $B^+ \rightarrow \eta \pi^+$ with 31.7M B meson pairs.

 $BF (B^+ \to \eta K^+) = (5.3^{+1.8}_{-1.5} \pm 0.6) \times 10^{-6} (4.9 \sigma)$ $BF (B^+ \to \eta \pi^+) = (5.4^{+2.0}_{-1.7} \pm 0.6) \times 10^{-6} (4.3 \sigma)$

Summary of other results:

Mode	$BF(\times 10^{-6})$	A_{CP}
ηK^{*+}	$26.5^{+7.8}_{-7.0}\pm3.0$	$-0.05^{+0.25}_{-0.30}$
$\eta K^{* 0}$	$16.5^{+4.6}_{-4.2}\pm1.2$	$0.17^{+0.28}_{-0.25}$
$\eta'K^+$	$77.9^{+6.2}_{-5.9}$	$-0.12\pm0.08\pm0.01$
$\eta'K^0$	$68.0^{+10.4}_{-9.6}$	-

The possible "New Physics" that's responsible for large B→η' X_s BF likely introduces phases.
CP violation

The time-dependent CP asymmetry can be expressed as:

$$\begin{split} A_{CP}(\Delta t) &= \frac{\Gamma(\overline{B^0} \to \eta' K_s; t) - \Gamma(B^0 \to \eta' K_s; t)}{\Gamma(\overline{B^0} \to \eta' K_s; t) + \Gamma(B^0 \to \eta' K_s; t)} = \boxed{A_{\eta'K_s}} \cos(\Delta m \Delta t) + \boxed{S_{\eta'K_s}} \sin(\Delta m \Delta t) \\ &\approx S_{\eta'K_s} \sin(\Delta m \Delta t) = \boxed{\sin 2(\phi_1 + \phi_{NP})} \sin(\Delta m \Delta t) \end{split}$$

- $A_{n'K_s}$: direct CP violation term
- ϕ_{NP} : phase from "New Physics".

Belle measurement: with 42 fb⁻¹ data.

CP-fit with non-asymmetric sample: η'K[±]

 \blacksquare CP-fit is performed with 73 η 'Ks candidates.

 $S(\eta'Ks) = 0.27_{-0.55}^{+0.54} \pm 0.07$ $A(\eta'Ks) = 0.12 \pm 0.32 \pm 0.07$

If $A(\eta'Ks)$ is set to be zero:

 $sin2(\phi_1 + \phi_{NP}) = 0.29^{+0.53}_{-0.54} \pm 0.07$

- First measurement of time-dependent CPV in $B{\rightarrow}\eta'K_s$ decay.
- Probe phases from New Physics.

─ Belle sin2\u03c6₁ = 0.82 ± 0.12(stat.) ± 0.05(syst.)

- The firsts:
 - Observed ωK and performed the first measurement on direct A_{CP}(ωK).
 - Evidence of ηK and $\eta \pi$.
 - Time-dependent CP asymmetry of $\eta' K_S$.
- Of all modes, no significant CP asymmetry is found with the possible exception of K_Sπ⁻ (fluctuation?). Need more data.
- Much more data is coming!

