Electric dipole moments: theory and experiment

EA Hinds

Blois June 2002

Two motivations to measure EDMs

EDM violates T symmetry

Deeply connected to CP violation and the matter-antimatter asymmetry of the universe

EDM is effectively zero in standard model but big enough to measure in non-standard models

direct test of physics beyond the standard model

A bit of history

CP from particles to atoms (main connections)

The Mercury EDM experiment

University of Washington, Seattle M.V. Romalis, W.C. Griffith, J.P. Jacobs, E.N. Fortson

Nuclear spin polarised ¹⁹⁹Hg vapor in a double cell

Difference of precession frequencies gives ¹⁹⁹Hg EDM

Hg edm result:

Phys. Rev. Lett. 86, 2505 (2001)

 $|d_{Hg}| < 2.1 \times 10^{-28} e \text{ cm}$

The Neutron EDM

Rutherford-Appleton Laboratory CA Baker, K Green, P Iaydjiev, S Ivanov

Sussex University S Al-Ayoubi, PG Harris, JM Pendlebury, JD Richardson, D Shiers, K F Smith, M van der Grinten ILL P Geltenbort

- Ultracold neutrons in a bottle precess at frequency (mB ± d_nE)/ħ
- Reverse E to measure d_n

E = 4.5 kV/cm $B = 1 \mu T$ $T_{\text{coherence}} \sim 130 \text{ s}$ Hg co-magnetometer(B is measured to 1 pT rms)

Neutron edm result: Phys. Rev. Lett. **82**, 904 (1999)

 $|d_n| < 6.3 \times 10^{-26} e \text{ cm}$

Neutron: longer range plans

New moderators using liquid helium or solid deuterium

Helium (ILL, LANL)
 Inside the helium
 Higher neutron density
 Higher E field

 Deuterium (PSI, TU-Munich) *Outside the deuterium Higher neutron density Bigger volume (fast moderation)*

Aiming at 10⁻²⁷ e.cm over next decade

Implications of n and Hg for the theta parameter

Implications of Hg and n for SUSY

quark electric dipole moments

$$\frac{1}{2} \mathbf{d}_{\mathbf{q}} \mathbf{\overline{q}} (\mathbf{F}_{\mu\nu} \, \sigma_{\mu\nu} i \gamma_5) \mathbf{q}$$

quark color dipole moments

$$\frac{1}{2}\, {\bm d}_{\bm q}^{\bm c} \; \overline{\bm q} \; (g_s \; G_{\mu\nu} \sigma_{\mu\nu} i \gamma_5 \;) \; {\bm q}$$

 $\frac{\mathbf{d}_{\mathbf{q}}}{\mathbf{d}_{\mathbf{q}}} \mathbf{d}_{\mathbf{q}}^{\mathbf{c}} \sim (\text{loop factor}) \cdot \underbrace{\mathbf{m}_{\mathbf{q}}}_{\text{scale of SUSY breaking naturally ~200 GeV}} \mathbf{f}^{\mathbf{p}} \text{ phase from soft breaking naturally O(1)}$

$$\rightarrow$$
 d_{u,d}, **d**^c_{u,d} ~ 1×10⁻²³ cm naturally

n and Hg experiments give $\mathbf{d}_{\mathbf{u}} < 2 \times 10^{-25}$ $\mathbf{d}_{\mathbf{d}} < 5 \times 10^{-26}$ $\mathbf{d}_{\mathbf{u}}^{\mathbf{c}} < 3 \times 10^{-26}$ $\mathbf{d}_{\mathbf{d}}^{\mathbf{c}} < 3 \times 10^{-26}$ $\mathbf{d}_{\mathbf{d}}^{\mathbf{c}} < 3 \times 10^{-26}$ $\mathbf{d}_{\mathbf{d}}^{\mathbf{c}} < 3 \times 10^{-26}$

CP from particles to atoms (main connections)

And now for the electron.....

The Thallium EDM experiment

Berkeley B.C. Regan, E.D. Commins, C.J. Schmidt and D. DeMille

1st huge problem:

motional interaction μ . v $\ {}^{\star}$ E

The solution:

add 2 more Tl beams going down

$\hbar \mathbf{w} = \mathbf{nB} \pm \mathbf{dE}$

analyse

analyse

polar

polarise

Ð

4 Tl atomic beams

2nd huge problem:

stray static magnetic fields

The solution:

Add 4 Na beams for magnetometry

A beautiful feature of the method

(Sandars)

Final Tl result: PRL 88, 071805 (2002)

Theoretical consequences of electron EDM

No direct contamination from θ problem

- a pure new physics search

Once again, natural SUSY is too big by 300

$$\phi_{\rm CP} < 3 \times 10^{-3}$$
 ??

$$\Lambda > 5 \text{ TeV } ??$$

The future for electron EDM experiments

polar molecules

potentially 1000 ⁻ more sensitive

The Sussex experiment uses ytterbium fluoride molecules

JJ Hudson, BE Sauer, MR Tarbutt and EA Hinds, arXiv hep-ex0202014 (2002)

(in Tl experiment ηE was 72 MV/cm)

2nd advantage of YbF:

No coupling $\mathbf{s} \times \mathbf{E} \cdot \mathbf{v}$ to motional magnetic field

electron spin s is coupled to internuclear axis

and internuclear axis is coupled to E

$\land < s \times E > = 0$ \longrightarrow no motional systematic error

The Sussex molecular beam

oven

1.5 m

Part of the optical setup

Measuring the edm

Projections for the future

	2002 result	cold YbF beam	trapped molecules
background	150kHz	640kHz	40kHz
fringe height	1.5 kHz	160 kHz	10 kHz
coherence time	1.5 ms	1 ms	1 s
d _e in 1 day	3 10 ⁻²⁶ e cm	6 10 ⁻²⁸ e cm	3 10 ⁻³⁰ e cm
long time = narrow fringes			

Current status of EDMs

Conclusion

EDM measurements (especially cold moleules) have great potential to elucidate

- **CP** violation
- particle physics beyond the standard model
- matter/antimatter asymmetry of the universe

some of the most fundamental issues in physics