CP Violation at Hadron Colliders

Introduction

0000/

00000

- CP violation
- hadron colliders importance and reach
- Focus on key measurements: B_s mixing, sin2b, B_d®pp, B_s®KK, B_s®D_sK, B_s®yf and B_s®yh⁽⁾. Details in hep/ph-0201071 (FNAL) and hep/ph-0003238 (CERN)
- Status of CDF and DO
- Future efforts: LHCb, BTeV, Atlas, CMS

D. Bortoletto, Purdue University, Blois, June 16-22, 2002

The importance of CP

- Investigation of CP violation:
 - Flavor puzzle. SM Model does not offer explanation of the structure of the CKM matrix
 - Supersymmetric flavor puzzle. Extensions of the SM need special flavor structure to achieve suppression of FCNC
 - New sources of CP violation. CP violation provides an excellent probe of NP
 - Baryon Asymmetry in the Universe. The observed CP asymmetry in the Universe in not accounted for by the CKM mechanism.
- Low energy measurements can provide insight about high mass scale physics

Checks of Unitarity Unitarity: To test CKM model Sides (a) 0.4 of CP violation we 0.3 mixing must compare $\Delta m_d / \Delta m_e$ unitarity triangles 0.2 determined from

different CP observables

- **B**_s measurements can not be done at the B-factories
- Need high statistics

$$\mathbf{b} = \arg \mathbf{c}^{\mathbf{a}} - \frac{V_{tb}V_{td}^*}{V_{cb}V_{cd}^*} \mathbf{\ddot{\phi}} \qquad \mathbf{g} = \arg \mathbf{c}^{\mathbf{a}}$$
$$\mathbf{c} = \arg \mathbf{c}^{\mathbf{a}} - \frac{V_{cs}^*V_{cd}}{V_{ts}^*V_{tb}} \mathbf{\ddot{\phi}} \qquad \mathbf{c}^{\mathbf{c}} = \arg \mathbf{c}^{\mathbf{a}}$$

CP : Complicated Puzzle

SM:side & angles measured in many processes should be consistent Otherwise: new physics

Tests of new Physics

In SM we expect c»0.03. Large asymmetries in B_s®yf and B_s®yh' Þ New Physics (NP)

$$\mathbf{c} = \arg \mathbf{\xi}^{\mathbf{a}} - \frac{\mathbf{V}_{cs}^* \mathbf{V}_{cb}}{\mathbf{V}_{ts}^* \mathbf{V}_{tb}} \frac{\mathbf{\ddot{o}}}{\mathbf{\dot{e}}} = \mathbf{O}(\mathbf{l}^2)$$

NP could lead to large effects in B_s mixing

 NP could also change BR and contribute to direct CP violation in B⁻®fK⁻

 $Asym = (M_W/m_{squark})^2 sin(f_n), \sim 0 in SM$

Hadron machines

Operation 2007

Hadron Machines

- Large cross section: s_{bb} » 100 (Tevatron)-400(LHC) mb for Ös=2.0-14 P » 10¹¹-10¹² bb/year.
- Large QCD background: <u>s</u>_{bb}/<u>s</u>_{inelastic}»(0.2-0.4)% for <u>0</u>s=2.0-14 TeV
 - Trigger to cut background
- B_u(40%), B_d(40%), B_s(10%), B_c and L_b are produced (at ; (4S) only B_u and B_d)
- The proper decay time $t = \frac{Lm}{pc} = \frac{L}{bg} \implies s(t) * \frac{1}{bc}$ s(t) ~900 fs at B factories, ~40-60 fs at LHC-Tevatron

- s(e⁺e⁻®BB)»1nb@
 - ;(4S)
- s(e⁺e⁻®bb)w7nb @Z⁰

Hadronic experiments

- Dedicated (forward »1.5<h<4.5: LHCb, BTeV) versus General (central |h|<»2.5: CDF, D0, CMS, ATLAS)
- Higher momentum B are at large h

- CDF and LHCb have secondary vertex trigger at L2
- CMS and Atlas actively investigating the possibility of developing a L2 secondary vertex trigger.

- Measure proper decay time
 - lifetime resolution (crucial for B_s mixing)
- Tag B flavor at production
 - figure of merit eD²:
 e=efficiency=N^{tag}/N^{tot}
 D=dilution=
 N^R-N^W/N^R+N^W
 - Hadronic machines
 eD²» 10%, B-factories
 eD²»25-27%

PhysicsRequirements $A(t) = \frac{N(B^{0}(t) \otimes f_{CP}) - N(B^{0}(t) \otimes f_{CP})}{N(B^{0}(t) \otimes f_{CP}) + N(B^{0}(t) \otimes f_{CP})} = 0$ $D \sin 2b \sin(Dm \times t)$

$$\mathbf{s}(\sin 2\mathbf{b}) \approx e^{x_d^2 \mathbf{Gs}_t} \sqrt{\frac{1+4x_d^2}{2x_d^2}} \frac{1}{\sqrt{\mathbf{eD}^2 \mathbf{N}}} \sqrt{1+\frac{\mathbf{B}}{\mathbf{S}}}$$

Particle Identification

- Important for many exclusive channel :
 - Distinguish B_s ® D_sK from
 B_s®D_sp
 - Or B **pp** from B_s **B**KK
- Flavor tagging:
 - Opposite side tagging through: b ® c ® s ® K⁻
 - Same side tagging: Charge of nearest **p** and K tags the b flavor

$$\begin{array}{c} & & \overline{b} \\ & & \overline{b} \\ & & \overline{s} \\ & & \overline{s} \\ & & & \end{array} \right\} \begin{array}{c} B_s^0 \\ K^+, K^{*0} \\ & & \searrow K^+ \pi \end{array}$$

Tevatron parameters

	Run I	Run IIa	Run IIb		
E _{beam}	900 GeV	980 GeV	980 GeV		
L _{PEAK}	1.6 ^{-10³¹cm ⁻²s⁻¹}	2¹0 ³²	5 ⁻ 10 ³²		
L _{Int}	118 pb ⁻¹	2fb ⁻¹	13fb ⁻¹		
N _{bunches}	6 6	36 136	140 103		
Spacing 3500ns		396 ns	132 ns Under		
Int/crossing	2.8	5.8	4.9		
Z ^{22.5} Jul Aug Sep Oct De 3 20 20 217.5 2.0 10 ³¹ C 15 15 15 15 15 12.5	m ⁻² S ⁻¹	Jul Aug Sep Oct Dec Jo 30pb -	n Feb Mar Apr		
10 7.5 5 2.5	10		CDF Delivered To tope		

1200 1300 Store Number

1200 1300 Store Number

0 6

...

CDF II

- From Run I:
 - Central calorimeter
 - Most of muon system
 - Solenoid
- New for Run II
 - Plug calorimeter
 - Time-of-Flight
 - Drift chamber
 - Silicon Microstrip Tracker with 3 D information: LOO
 + SVXII +ISL
 - Tracking to h of 2
- SVT: level two displaced track trigger

The SVT trigger

- Uses drift chamber tracks (f, p_T) & 5 SVXII si layers
- 2-D reconstruction of tracks with p_T>2GeV/c with offline resolution
- Allows triggering at L2 on displaced impact parameter and vertices
 - L2 track trigger: 100 **m** <d<1 mm, 20⁰<**Df**₀<125⁰, d_B<140 **m**, p_T×X_v>0

TOF Performance

- Expected TOF resolution 100ps
- 2s separation of
 - K/p for p<1.6 GeV
 - p/K for p<2.7 GeV/c
 - **p**/p for p<3.2 GeV/c

- Excellent calorimetry
- Excellent lepton coverage

D0 UPGRADE

- Inner tracking (silicon + scintillating fibers + 2T solenoid) $dp_T/p_T^2=0.002$, $s^{secondary}=40$ mm (r-f), 80 mm (r-z),
- Pipelined level 3 trigger, impact parameter trigger at L2 starting end Summer 2002

DO INNER TRACKING PERFORMANCE

(SMT+CFT) Global tracks

DØ Run 2 Preliminary

LHCb

LHCb: proposed and approved in 1998, Designed for Bphysics at 2¹0³²

—Excellent PID with RICH

-Vertex detector inside the beam vacuum

—Recent optimization to reduce material budget **Þ** LHCb light TDR will be ready at the end of the year

BTeV

- BTeV proposed in 2000, approved at Stage 1, Temple review 9/2002. Updated proposal (May 2002) has single arm spectrometer.
 - **—Excellent PID with RICH**
 - —Pixel detector inside the beam vacuum, 30M channels, 50 mm ²400 mm pixels
 - —PbWO4 calorimeter (developed by CMS) with PMT readout PExcellent resolution

$$\frac{\mathbf{s}(\mathbf{E})}{\mathbf{E}} = \frac{0.016}{\sqrt{\mathbf{E}/\mathbf{GeV}}} + 0.0055$$
31 stations (62 Si planes)

Comparison PID and g detection in Hadronic Experiments

• Particle ID and g detection can improve physics reach

Exp	Particle I	D	gDetection		
	Device	p /K p range	Device	$\mathbf{s}(\mathbf{E})/\mathbf{E}$ (E in GeV)	
CDF	TOF,dE/dx	p < 1.6(GeV/c)	Pb-scint	13.5%/ Ö E	
D0	None		Ur-Liquid Ar	15.7%/ÖEÅ0.3%	
ATLAS	None		Pb-Liquid Ar	8%/ ÖEÅ 0.2/E Å0.7%	
CMS	None		PbWO ₄	2.7%/ÖEÅ0.2/E Å0.55%	
BTeV	Gas RICH	» all	PbWO ₄	1.6%/ÖEÅ0.55%	
LHCb	Gas RICH	» all	Pb-scint	10%/ ÖEÅ 1.5%	

S. Stone²¹

- Expect to cover the SM range with $100-200 \text{ pb}^{-1}$.
- Predictions assume excellent trigger and reconstruction 22 efficiencies

Sin2b

- Hadronic machines can contribute to measure sin2b
- CDF RUN I measurement with improved tagging, using B⁰® J/yK⁰_s, J/y(2S)K⁰_s:

BABAR

CDF

BELLE

Measuring a

 B® p⁺p⁻ could provide a measurement of a but we expect significant penguin pollution. CLEO, BaBar and Belle measure:

 $B(B^{0} \otimes p^{+}p^{-}) = (4.5 \pm 0.9) \ 10^{6}$ $B(B^{0} \otimes K^{\pm}p^{+}) = (17.3 \pm 1.5) \ 10^{6}$

- Measure $B^0 \otimes p^+ p^ B^0 \otimes p^0 p^0 B^+ \otimes p^+ p^0$ (Gronau, Landon)
- Time dependent anlysis of B⁰® r⁺p⁻® p⁺p⁻p⁰ Dalitz plot (Snyder & Quinn)
- Difficult, needs good EM calorimeter.

Measuring a

 Dalitz Plot analysis of B®rp®p⁺p⁻p⁰ yields both sin2a and cos2a (Snyder and Quinn, PRD 48, 2139 (1993))

Measuring g

- Several techniques:
 - Time dependent $B_s \otimes D_s^{\pm} K^{\mp}$, large background from $B_s \otimes D_s p$. Need high statistics and PID
 - Time dependent rate of $B^0/\overline{B}^0 \otimes D^* \pm p^{\mp}$ measures 2b+g but interference effect are expected to be small
 - Measure rate difference between $B^- \ensuremath{\mathbb{B}}^{o} K^-$ and $B^+ \ensuremath{\mathbb{R}} D^o K^+$
 - Rate measurements in K^op[±] and K[±]p[∓] (Fleisher-Mannel) or rates in K^op[±] & asymmetry in K[±]p^o (Neubert-Rosner, Beneke et al)
 - Use U spin symmetry dÛs: measure time dependent asymmetries in B^o® p⁺p⁻ and B_s®K⁺K⁻ (Fleischer)
 - Time dependent rate of B_s/B_s®K⁺K⁻ normalized to B_s®K⁰K⁰ (Gronau and Rosner)
- Several modes involve $\mathbf{B}_{\mathbf{S}}$ decay and are ideal for hadron machines

B®h+h-

- Trigger on two SVT tracks with large impact parameter.
- Use:B(B_d **pp**)=(4.3±1.6)⁻⁶ and B(B_d **Kp**)= (17.2±2.8)⁻⁶. Assume B_d/B_s=2.5 and SU(3) **P**

 B_{d} **Pp:** B_{d} **Rp:** B_{s} **Rp:** B_{s} **RKp:** B_{s} **RKK** =1:4:0.5:2

• CDF expects in 2 fb⁻¹:

 $B_d \rightarrow K\pi$ $B_s \rightarrow KH$ 200 100 **CDF** 0 5.25.4 $M_{\pi\pi}$ (GeV²)

 $B_{d} \otimes p^{+}p^{-}$ (5K) $B_{s} \otimes K^{+}K^{-}$ (10K) $B_{d} \otimes K^{+}p^{-}$ (20K) $B_{s} \otimes p^{+}K^{-}$ (2.5K) eD²»10% for B_{d} and B_{s}

• Measure: $\mathbf{A}_{CP} = \mathbf{A}_{CP}^{dir} \cos(\mathbf{D} \mathbf{m} t) \pm \mathbf{A}_{CP}^{mix} \sin(\mathbf{D} \mathbf{m} t)$

Number

- **s**[A(K⁺K⁻)] ~ 0.08
- **s**[A(**p**⁺**p**⁻] ~ 0.14
- Using U-spin symmetry P d=d'=P/T, q=q¢strong phase s(g) ~ 10° (stat.Å syst.)

gFrom $B_s \otimes D_s K$

- Interference between direct and mixing decays measures sin("g-2c"±d) Aleksan, Dunietz, Kayser
- Expect large asymmetry because the two tree amplitudes μl²
 - Excellent proper time resolution I
 - Excellent PID because of
 Cabibbo allowed B⁰® D_s⁻p⁺

B_s \mathbb{B} \mathbf{y} \mathbf{f} and \mathbf{y} \mathbf{h}

- Silva & Wolfenstein, Aleksan, Kayser & London propose these modes to test new physics
- SM predicts the B_s mixing phase to be small

$$\mathbf{c} \approx \left| \frac{\mathbf{V}_{us}}{\mathbf{V}_{ud}} \right|^{2} \frac{\sin \mathbf{b} \sin \mathbf{g}}{\sin(\mathbf{b} + \mathbf{g})} \approx 2\mathbf{l}^{2}\mathbf{h}$$

- J/yf is not a pure CP final state
 - Angular analysis required for clean extraction: Atlas, CMS 300-600K untagged events in 3 years, LHCb >370k in 5 years
- J/yh⁽ pure CP=-1 final state
 - Needs excellent g detection
 - BTeV: s(c)»0.024 in 1 year

Comparison /10⁷ s

Exp	sin2 b		a	g	С	
	B ^o ® J/yK _s		Bo®rp	B _s ® D _s K ⁻	B _s ®J/yX (n &e)	
	Error in sin2 b	J/y decay	Error in a	Error in g	X=h(¢ Error in c	X=f Error in c
CDF	0.05	mm		25-45 ^o (IIA) 6 ⁰ -17 ⁰ (IIB)		0.08
D 0	0.04	mm				
ATLAS	0.017	m &e				0.03
CMS	0.015	m &e				0.014
LHCb	0.021	m&e	2.5-4.9°	8 °		0.02
BTeV	0.017	mm	± 4º	11.5°	0.024	31

Comparison with B factories

	BTeV	LHCb	B-factory	SuperB-10 ³⁵	SuperB-10 ³⁶
	10 ⁷ s	10 ⁷ s	(2005)	10 ⁷ s	10 ⁷ s
sin2 b	0.017	0.021	0.037	0.026	0.008
sin2 a	0.05	0.05	0.14	0.1	0.032
g(B _s ®D _s K) <	»7 ⁰	»8 ⁰			
g(B®DK)	»2 ⁰		»20 ⁰		1-2.5 ⁰
B(B®p ⁰ p ⁰)			»20%	»14%	»6%
V _{ub}			»2.3%	»1%	»1%

Snowmass: E2 report

New Physics Modes

Mode	BTeV (107s)			B-f	B-fact (500fb⁻¹)		
	Yield	Tagged	S/B	Yield	Tagged	S/B	
B _s ®J/ yh (€	12650	1645	>15	-	-		
B ⁻ ® f K ⁻	6325	6325	>10	700	700	4	
B°®fK _s	1150	115	6.5	250	75	4	
Bº®K*mm	2530	2530	11	~50	~50	3	
B _s ® mm (10 ⁻⁹)	6	0.7	>15	-	-	-	
B® tn				17	17		
$\mathbf{D}^{*+} \otimes \mathbf{p}^{+} \mathbf{D}^{0},$	~108	~108	large	8x10 ⁵	8x10 ⁵	large	
D° ®K ⁻ p ⁺				²⁰ at 10 ³⁶ SuperB Factory			

Conclusions

- B Physics at hadron colliders is complementary to e⁺e⁻ B-factories
 - Huge statistics 10¹² bb/year and B_s
- Tevatron:
 - CDF is pioneering secondary vertex triggering.

Expect measurements of B_s mixing, CP asymmetries in B®yK_s, B®pp and B_s®KK from CDF and D0.

- Dedicated experiments (LHCb and BTeV) with improved PID and photon reconstruction
 - Clean extraction of g
 - Tests new physics through precision measurements and sensitivity to discrepancies with SM predictions.