An Intense Road to the Sensitivity Frontier:

Future Kaon Beam Experiments.

R. Tschirhart
Fermilab

XIVth Recontres De Blois
June 21st, 2002
Post Cards From the Frontier...

- Link to the high energy frontier: $B(K_L \rightarrow \mu e) < 4.7 \times 10^{-12}(90\% C.L)$, BNL-871. Corresponds to Lepton Flavor Violating X-boson: $m_X > 190 \text{ TeV}/c^2$.

- Rarest particle decay every seen: $B(K_L \rightarrow e^+e^-) = (9^{+6}_{-4}) \times 10^{-12}$, BNL-871.

- The KTeV $K_{\gamma\ast\gamma\ast}$ laboratory: $K_L \rightarrow \mu^+\mu^-e^+e^-$.

![Invariant Mass Distribution](image)

Branching Fraction = \((2.61 \pm 0.23(stat) \pm 0.18(syst)) \times 10^{-9}\)

(KTeV Preliminary.)
Brookhaven E787 has Detected Two $K^+ \rightarrow \pi^+\nu\bar{\nu}$ Events

$$BR(K^+ \rightarrow \pi^+\nu\bar{\nu}) = 1.57^{+1.75}_{-0.82} \times 10^{-10}$$

Standard Model prediction: $BR = (0.77 \pm 0.21) \times 10^{-10}$.

FIG. 2: Range vs. energy plot of the final sample. The circles are for the 1998 data and the triangles are for the 1996-97 data set. The group of events around $E = 108$ MeV is due to the K_{e2} background. The simulated distribution of expected events from $K^+ \rightarrow \pi^+\nu\bar{\nu}$ is indicated by dots.
Measuring V_{td}

- **CKM Goal:** Measure $|V_{td}|$ to the limits of theory.

$$B(K^+ \rightarrow \pi^+ \nu \bar{\nu}) = |V_{td}|^2 \times \left(\frac{\text{known stuff}}{\text{stuff}} \right)$$

$$= (0.44 \pm 0.15) \times 10^{-10}[1.4 - \bar{\rho}^2 + \pi^2]$$

- We really measure the branching ratio ratio:

$$\frac{B(K^+ \rightarrow \pi^+ \nu \bar{\nu})}{B(K^+ \rightarrow \pi^0 e^+ \nu)} = \frac{3\alpha^2}{8\pi^2 \sin^4 \theta_W} \frac{|V_{us} V_{cd} D(X_c) + V_{ts} V_{td} D(X_t)|^2}{|V_{us}|^2}$$

- Total theoretical uncertainty of 8% estimated by Buras et al. is dominated by uncertainty in the charmed quark mass.

- With ~ 100 events CKM’s measurement of $B(K^+ \rightarrow \pi^+ \nu \bar{\nu})$ translates to an uncertainty in $|V_{td}|$ of about 6% statistical and 8% theoretical.

- With current $|V_{CKM}|$ values:

$$B(K^+ \rightarrow \pi^+ \nu \bar{\nu}) = (0.77 \pm 0.21) \times 10^{-10}$$
The Physics Context

- It is *vital* that ρ and η of the CKM matrix be precisely measured.
- The *critical question* is not what ρ and η are, but whether all CP phenomena can be described with such a compact formalism.
- Four Gold-Plated accessible measurements have sufficient theoretical robustness that a contradiction could call the Standard Model into question:

 - $K^+ \to \pi^+ \nu \bar{\nu}$: BNL787/949, CKM
 - $K^- \to \pi^- \nu \bar{\nu}$: KOPIO, KEK-e391a/JHF
 - $B_d \to J/\psi K_S$: Babar, Belle, CDF, D0, LHCb, Atlas, CMS, BTeV
 - $\Delta M_d/\Delta M_s$: CDF, D0, LHCb, Atlas, CMS, BTeV
Comparison of Precision from Proposed K and B Measurements

$\sigma(|V_{cb}|) = \pm 0.002(0.001)$

<table>
<thead>
<tr>
<th></th>
<th>$K \rightarrow \pi \nu \bar{\nu}$</th>
<th>B-Factory Era</th>
<th>LHCb/BTEV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma(</td>
<td>V_{td}</td>
<td>)$</td>
<td>$\pm 10%(9%)$</td>
</tr>
<tr>
<td>$\sigma(\bar{\rho})$</td>
<td>$\pm 0.16(0.12)$</td>
<td>± 0.03</td>
<td>± 0.01</td>
</tr>
<tr>
<td>$\sigma(\bar{\eta})$</td>
<td>$\pm 0.04(0.03)$</td>
<td>± 0.04</td>
<td>± 0.01</td>
</tr>
<tr>
<td>$\sigma(\sin 2\beta)$</td>
<td>± 0.05</td>
<td>± 0.06</td>
<td>± 0.02</td>
</tr>
<tr>
<td>$\sigma(\text{Im } \lambda_t)$</td>
<td>$\pm 5%$</td>
<td>$\pm 14%(11%)$</td>
<td>$\pm 10%(6%)$</td>
</tr>
</tbody>
</table>
Progress toward Measuring $\text{BR}(K^+ \rightarrow \pi^+\nu\bar{\nu})$
CKM: Charged Kaons at the Main Injector

Measuring the CKM matrix element $|V_{td}|$ with a statistical precision of 5% and an overall precision of 10% through a measurement of the branching ratio of:

$$K^+ \rightarrow \pi^+ \nu \bar{\nu}$$

And There is Other Physics Yet...
Charged Kaons at the Main Injector

June 6, 2002

A Proposal for a Precision Measurement of the Decay
$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ and Other Rare K^+ Processes at Fermilab Using the Main Injector

J. Frank, S. Kettell, R. Strand
Brookhaven National Laboratory, Upton, NY, USA

L. Bellantoni, R. Coleman, P.S. Cooper*, T. R. Kobilarov, H. Nguyen, E. Ramberg,
R. S. Tschirhart, H. B. White, J. Y. Wu
Fermi National Accelerator Laboratory, Batavia, IL, USA

G. Britvich, V. Burtocev, A. V. Inyakin, V. Kurshetov, A. Kushnirenko,
L. G. Landsberg, V. Molchanov, V. Obraztsov, S. I. Petenko, V. I. Rykalin,
A. Soldatov, M. M. Shapkin, O. G. Tsikilev, D. Vavilov, O. Yushchenko
Institute of High Energy Physics, Serpukhov, Russia

V. Bolotov, S. Laptev, A. Polarush, A. Pastsiak, R. Siroteev
Institute of Nuclear Research, Troitsk, Russia

J. Engelfried, A. Morelos
Instituto de Física, Universidad Autonoma de San Luis Potosí, Mexico

A. R. Barker, H. Huang, R. Nicholsen, M. Wilking
University of Colorado, Boulder, Colorado, 80309

M. Campbell, R. Gustafson, M. Longo, H. Park
University of Michigan, Ann Arbor, Michigan 48109

C.M. Jenkins
University of South Alabama, Mobile, Alabama 36688

K. Lang
University of Texas at Austin, Austin, Texas 78712

C. Dukes, L. Lu, K. Nelson
University of Virginia, Charlottesville, Virginia 22901

* Spokesman: P.S. Cooper, pocooper@fnal.gov, (630) 840-2629
Web Address: www.fnal.gov/projects/clm/Welcome.html
• Decay in flight experiment: 22 GeV/c enriched K^+ beam.
• Philosophy: redundant measurements, proven technology.
• Good, redundant measurements of K^+ and π^+ momenta.
• Good, redundant particle ID for signal and backgrounds.
• Very high-rate, low-mass detectors.
Number of Kaons Needed

\[
\text{Branching Ratio} \times \begin{cases}
0.12 & \text{decay region} \\
0.034 & \text{acceptance/cuts} \\
0.70 & \text{livetime/efficiencies}
\end{cases} = 2.74 \times 10^{-13}
\]

\[3.65 \times 10^{14} \text{ } K^+\text{'s needed for 100 accepted } K^+ \to \pi^+\nu\bar{\nu}\text{ decays.}\]

Assume a 2-year run with a 1-s spill of \(4 \times 10^{12}\) protons every 3-s:

2 yr/run·39 wk/yr·120 hr/wk·3600 s/hr·1 spill/3 s = \(1.12 \times 10^7\) spill/run

\[32.5 \text{ MHz } K^+ \text{ beam needed}\]

* Implications *

1. Protons required are a small fraction of the Main Injector capacity.
2. Unbunched beam *required*.
3. Enriched \(K^+\) beam *required*.

Relative 22 GeV rates from 120 GeV protons:

\[
\begin{cases}
10 & \pi^+ \\
4 & p \\
1 & K^+
\end{cases}
\]
Enriching the Kaon Content of the Beam

Target RF 1

Unitary Transfer Lattice RF 2

Point-to-Parallel optics

Beam stop

\mathbf{p}, $^+$, K^+

\mathbf{p}

K^+

$\frac{1}{256}$ ps = 3.91 Ghz

v/c

$^+$: 0.99998

K^+: 0.99975

p: 0.99909

180°

180° + 94°

p, $^+$, K^+

RF 1

RF 2

net kick

RF 1

RF 2

net kick

v/c

p

K^+

86.4 m

7.7 cm 2.01 cm 0 cm

256 ps 67 ps 0 ps

360° 94.1° 0°
13-cell transverse field prototype.

Six 13-cell cavities per station: $p_T = 15\text{ MeV}$.

Tesla R&D has been critical to the success of this development.

- One-cell prototype has exceeded surface field requirement by $\times 2$.
- Tuning and optimization of 13-cell cavity underway.
Backgrounds a (the) Problem!

Signal
- \(K^+ \)
- Tools
 - momentum
 - direction
 - particle ID
 - 3-body decay

For every 10 billion \(K^+ \) decays we get:
- 1
 - \((BR = 1 \times 10^{-10}) \)

Backgrounds
- \(K^+ \)
- \(K^+ \)
- \(K^+ \)
- \(K^+ \)
- Tools
 - particle ID
 - 2-body decay
 - -veto
 - charged veto
 - low material

- \(6,350,000,000 \)
 - \((BR = 0.635) \)

- \(2,120,000,000 \)
 - \((BR = 0.212) \)

- lots!
Eliminating Backgrounds

Background rejection must be $\sim 10^{12}$

1. Kinematics

$$M^2_{\text{miss}} = M^2_K (1 - \frac{p_\pi}{p_K}) + m^2_\pi (1 - \frac{p_K}{p_\pi}) - p_\pi p_K \theta^2$$

- Major backgrnds, $K^+ \rightarrow \pi^+\pi^0$, $K^+ \rightarrow \mu^+\nu_\mu$, have well-defined missing masses.
- θ, p_K, p_π, need to be measured to 1% or better.
- Done with momentum and velocity spectrometers.

2. Particle Identification

1. Mass using momentum and velocity spectrometers.

$$m = \frac{p}{\gamma v}$$

Ring Imaging Cherenkov Detector Systems

\[r = \frac{R}{2} \sqrt{2 - \frac{2}{n} \left[1 + \left(\frac{mc}{p} \right)^2 \right]} \]

- Vector velocity spectrometers.
- Provide totally independent measurement of momentum of \(K^+ \) and \(\pi^+ \).
- Provide (with magnetic spectrometers) particle ID for \(K^+ \), \(\pi^+ \), \(\mu \), \(p \) and \(e \).
- Fast: phototube readout.
- Excellent momentum resolution.
- Based on successful SELEX RICH.
SELEX RICH: Particle Id negative tracks

Entries: 53229793

Muon
Pion
Kion
Proton
Sigma
Xi
Omega

Momentum [GeV/c]
Momentum and Velocity Spectrometer Resolutions Well Matched

$$M_{\text{miss}}^2 = M_K^2 (1 - \frac{p_\pi}{p_K}) + m_\pi^2 (1 - \frac{p_K}{p_\pi}) - p_\pi p_K \theta^2$$
SELEX RICH Rings Gaussian over Five Orders of Magnitude
Little Correlation between Magnetic and Velocity Measurements

\[\left(\frac{M^2_{\text{miss}}}{\text{track}} \right) \]
CKM Sensitivity After Two Years

\[K^+ \rightarrow \pi^+\pi^0 \text{ 158K events} \]

\[K^+ \rightarrow \pi^+\nu\bar{\nu} \]

95 events in signal region

\[M^2_{\text{miss}} [\text{GeV}^2] \]

1.123\times10^7 \text{ spill-s/2 yr run}
× 31\times10^6 \text{ MHz kaon beam} = 3.5\times10^{14} K^+
× 1\times10^{-10} \text{ BR}(K^+ \rightarrow \pi^+\nu\bar{\nu}) = 3.5\times10^4 K^+ \rightarrow \pi^+\nu\bar{\nu}
× 0.116 \text{ lifetime acceptance} = 4.0\times10^3 K^+ \rightarrow \pi^+\nu\bar{\nu}
× 0.034 \text{ acceptance/cuts} = 137 K^+ \rightarrow \pi^+\nu\bar{\nu}
× 0.070 \text{ livetime/efficiency} = 96 K^+ \rightarrow \pi^+\nu\bar{\nu}
Use Data to Test Factorization

Two sources of background rejection in CKM:

- Kinematics: \(\sim 5 \times 10^{-6} \) for \(K^+ \rightarrow \pi^+\pi^o \).
- Particle ID: \(\sim 2 \times 10^{-7} \) for \(K^+ \rightarrow \pi^+\pi^o \).

Important: We assume these two sources are independent:
Factorization Assumption

Demonstrated for BNL-787: \(\pi^+ \) momentum line shape unchanged after online \(\gamma \) cuts and full offline \(\gamma \) cuts.
K_L Decay Modes

<table>
<thead>
<tr>
<th>Decay Mode</th>
<th>Branching Ratio</th>
<th>Additional Particles</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi^0\pi^0\pi^0$</td>
<td>21.13 %</td>
<td>4γ</td>
</tr>
<tr>
<td>$\pi^+\pi^-\pi^0$</td>
<td>12.55 %</td>
<td>2Ch</td>
</tr>
<tr>
<td>$\pi^0\mu^-\nu$</td>
<td>27.18 %</td>
<td>2Ch</td>
</tr>
<tr>
<td>$\pi^0\epsilon^-\nu$</td>
<td>38.78 %</td>
<td>2Ch</td>
</tr>
<tr>
<td>$\gamma\gamma$</td>
<td>5.86 $\cdot 10^{-4}$</td>
<td></td>
</tr>
<tr>
<td>$\gamma\gamma\gamma$</td>
<td><2.4 $\cdot 10^{-7}$</td>
<td>1γ</td>
</tr>
<tr>
<td>$\pi^0\gamma\gamma$</td>
<td>1.68 $\cdot 10^{-6}$</td>
<td>2γ</td>
</tr>
<tr>
<td>$\pi^0\pi^+\pi^-$</td>
<td>5.18 $\cdot 10^{-5}$</td>
<td>2Ch</td>
</tr>
<tr>
<td>$\pi^0\pi^-\pi^+$</td>
<td>3.62 $\cdot 10^{-3}$</td>
<td>2Ch</td>
</tr>
<tr>
<td>$\pi^+\pi^-\gamma$</td>
<td>5.7 $\cdot 10^{-4}$</td>
<td>2Ch</td>
</tr>
<tr>
<td>$\pi^0\pi^-\gamma$</td>
<td>4.61 $\cdot 10^{-5}$</td>
<td>2Ch</td>
</tr>
<tr>
<td>$\pi^0\pi^+\gamma$</td>
<td><5.6 $\cdot 10^{-6}$</td>
<td>3γ</td>
</tr>
<tr>
<td>$\mu^-\mu^-\gamma$</td>
<td>3.25 $\cdot 10^{-7}$</td>
<td>2Ch</td>
</tr>
<tr>
<td>$e^-e^-\gamma$</td>
<td>10.0 $\cdot 10^{-7}$</td>
<td>2Ch</td>
</tr>
<tr>
<td>$e^-e^-\gamma$</td>
<td>6.9 $\cdot 10^{-7}$</td>
<td>2Ch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decay Mode</th>
<th>Branching Ratio</th>
<th>Additional Particles</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi^0\epsilon^+\epsilon^-$</td>
<td><7.1 $\cdot 10^{-7}$</td>
<td>1γ 2Ch</td>
</tr>
<tr>
<td>$\pi^0\pi^0$</td>
<td>2.06 $\cdot 10^{-3}$</td>
<td>2Ch</td>
</tr>
<tr>
<td>$\pi^+\pi^-$</td>
<td>9.27 $\cdot 10^{-4}$</td>
<td>2γ</td>
</tr>
<tr>
<td>$\mu^-\mu^-$</td>
<td>7.15 $\cdot 10^{-9}$</td>
<td>2Ch</td>
</tr>
<tr>
<td>e^-e^-</td>
<td>9 $\cdot 10^{-9}$</td>
<td>2Ch</td>
</tr>
<tr>
<td>$\pi^0\epsilon^+\epsilon^-$</td>
<td>3.5 $\cdot 10^{-9}$</td>
<td>4Ch</td>
</tr>
<tr>
<td>$\mu^-\mu^-$</td>
<td>2.9 $\cdot 10^{-9}$</td>
<td>4Ch</td>
</tr>
<tr>
<td>$e^-e^-\epsilon^-$</td>
<td>4.1 $\cdot 10^{-8}$</td>
<td>4Ch</td>
</tr>
<tr>
<td>$\pi^0\nu\nu$</td>
<td><5.1 $\cdot 10^{-9}$</td>
<td>2Ch</td>
</tr>
<tr>
<td>$\nu\nu\nu$</td>
<td><4.3 $\cdot 10^{-9}$</td>
<td></td>
</tr>
<tr>
<td>$e^-\mu^-$</td>
<td><5.9 $\cdot 10^{-9}$</td>
<td>2Ch</td>
</tr>
<tr>
<td>$e^-e^-\mu^-\mu^-$</td>
<td><4.7 $\cdot 10^{-9}$</td>
<td>4Ch</td>
</tr>
<tr>
<td>$\pi^0\epsilon^+\epsilon^-$</td>
<td><6.1 $\cdot 10^{-9}$</td>
<td>2Ch</td>
</tr>
<tr>
<td>$\pi^0\nu\nu$</td>
<td><6.2 $\cdot 10^{-9}$</td>
<td></td>
</tr>
</tbody>
</table>

G. Y. Lim
KEK
How far must we go?

G.Y. Lim;
KEK

$BR(K_L \rightarrow \pi^0 e\nu_e, K_{e3}, K_{\mu3})$

K_{TeV} \(\Rightarrow\) Current Exp. Limit

Limit from $K^+ \rightarrow \pi^+ e\nu$ (PRL 84, 3768 (2000))

E391a \(\Rightarrow\) New Physics (?)

S. M. Prediction

JHF KOPIO(BNL)
KEK PS E391a Detector Setup

\[K_L \rightarrow \pi^0 \nu \nu \]

Features:
* Pencil Beam
* High acceptance
* High \(P_T \) selection

* Pilot Project for JHF
* Test reliance on extreme photon veto efficiency

pure CsI calorimeter

\(4\pi \) veto system
Beam Profile

Counts per 10^3 protons

Distance from beam center (mm)

- Neutron
- Photon

G.Y. Lim;
KEK
KOPIO: Measurement of $K_L^0 \rightarrow \pi^0 \nu \bar{\nu}$

CONCEPTS

- Measure as much as possible:
 Energy, position and $ANGLE$ of each photon.
- Work in the C.M. system:
 Use TOF to get the K_L^0 momentum.
- Maximize Photon Veto Efficiency
- Maximize Intensity of Microbunched Beam
Conclusions

- Kaon Physics has matured to the point where the step from proven 1×10^{-11} sensitivity to 1×10^{-12} has been sensibly argued. This sensitivity is the key that will unlock the door to $K \rightarrow \pi\nu\bar{\nu}$.

- This step is fueled by ever increasing proton drivers (7×10^{13} protons/pulse with the AGS!), very clean kaon beams, and innovative detector technologies.

- The CKM, KOPIO, and E391-KEK/JHF experiments form a suite of promising experiments that can reach the 1×10^{-12} frontier in this decade.

- The scope of these experiments is similar to the Fermilab KTeV and BNL-E787 experiments which have been successfully executed. These mid-size experiments are well within the resources of this field; and the physics compels us to build them.

The Protons Are Here Today—The Frontier Awaits!