Overview Antiprotons - Capture - Cooling Positrons - accumulation rate - transfer - lifetime **Detector** - Tracking - 511 keV Summary Outlook

e⁺ ACCUMULATOR

ANTIHYDROGEN DETECTOR

ATHENA / AD-1

The ATHENA Experiment

Blois

20 June 2002

Michael Doser / CERN

Overview - Goals

Overview Antiprotons - Capture - Cooling **Positrons** - accumulation rate - transfer - lifetime Detector - Tracking - 511 keV Summary Outlook

 Produce slow antihydrogen atoms
 Compare properties of hydrogen and antihydrogen with very high precision

ATHENA / AD-1

10-12

10⁻⁹

10-6

10⁻¹⁵

10⁻¹⁸

Overview - Collaboration

Athena / AD-1 Collaboration

Aarhus

Bowe P. Hangst J.S.

Brescia Bonomi G. Lodi-Rizzini E. Venturelli L.

CERN

Bouchta A. Doser M. Holzscheiter M. Landua R. Riedler P. Rouleau G.

Genoa

Amoretti M. Carraro C. Joffrain W. Lagomarsino V. Macri M. Manuzio G. Testera G. Variola A.

Pavia

Bendiscioli G. Filippini V. Fontana A. Genova P. Marchesotti M. Montagna P. Rotondi A. Salvini P.

Swansea

Charlton M. Collier M. Jorgensen L. Van der Werf D.P. Watson T.

Tokyo

Fujiwara M. Funakoshi R. Hayano R. Higaki H. Yamazaki Y.

Zurich Univ.

Amsler C. Glauser A. Grögler D. Lindelof D. Madsen N. Pruys H. Regenfus C.

Rio de Janeiro (UFRJ) Lenz Cesar C.

MIT Kleppner D.

ATHENA / AD-1

Overview

- Capture

- Cooling

- transfer

- lifetime

Detector

- Tracking

- 511 keV

Summary

Outlook

Positrons

- accumulation rate

Overview - Apparatus

ATHENA / AD-1 : Antihydrogen Production

ATHENA / AD-1

Overview - Apparatus

Principal achievements 2001

Overview Antiprotons - Capture - Cooling Positrons - accumulation rate - transfer - lifetime Detector - Tracking - 511 keV Summary Outlook

- $\cdot 2.10^4$ antiprotons captured and cooled in antiproton capture trap
- These antiprotons transferred and captured in recombination trap
- Multiple AD shots stacked without significant losses
- 150 million positrons accumulated per 5 minute cycle
- 25 million positrons stored in recombination trap for several hours
- Antihydrogen detector fully commissioned
- Antiproton vertex resolution $\sigma \sim 3-4$ mm ("antiproton tomography")
- 511 keV peak from positrons observed in situ

Antiprotons - Capture and Cooling

Antiproton capture trap

5.3 MeV antiproton bunch from AD

Degrading $(\pm 4 \mu \text{ Al})$

Capture

- switch to 5 kV in 200 ns
- 20,000 antiprotons / AD shot ($\epsilon \sim 10^{-3}$)

Cooling with electrons ($\tau \sim 20-30$ s)

Stacking of four AD shots

- no significant losses
- **Transfer** to recombination trap ($\varepsilon = 80 \%$)

Proposal target achieved

Electron cooling of antiprotons

ATHENA / AD-1

Overview

- Capture - Cooling

Positrons

- transfer

- lifetime

Detector

- Tracking

- 511 keV

Summary

Outlook

- accumulation rate

Positron Accumulation (2)

Overview Antiprotons - Capture - Cooling Positrons - accumulation rate - transfer - lifetime Detector - Tracking - 511 keV Summary Outlook

- Accumulation rate ~ 10⁶ e⁺/sec
- With rotating wall compression:
- 150 M positrons stored per 5 min
- Up to 200 M positrons in trap
- Without rotating wall:
- 100 M positrons stored per 3 min

Accumulated positrons vs time

Positron Transfer

Overview Antiprotons - Capture - Cooling **Positrons** - accumulation rate - transfer - lifetime **Detector** - Tracking - 511 keV Summary Outlook

Scheme of positron transfer efficiency measurements

• Transfer

- accelerate positrons ~ 20 V
- pulse transfer magnet (1.2 T)
- monitor CsI counters 1, 2
- Result:
 - > 50 % transfer efficiency

Positrons in recombination trap

Positron side

R₁

R₇

 $R_3 R_4 R_5$

• Capture

switch end electrodes ~ 3µs after injection "squeeze" into center

• **Positron Lifetime** several hours (harmonic potential)

Diagnostics
 Tuned circuit
 Collective modes ("drive and read")
 Extraction on Phosphor screen + CCD
 Extraction on Faraday cups

R₁₁

R₁₂ R₁₃

Recombination Trap Structure

R₁₀

Rq

Csl Crystals Si strips

R₁₄ R₁₆

111

R₁₈ R₂₀

Pbar side

R₂₁

positron cloud after injection (light) and compression (dark)

Overview

- Capture

Positrons

- transfer

- lifetime

Detector

- Tracking

- 511 keV

Summary

Outlook

- accumulation rat

Antihydrogen Detector

GOAL

Vertex from tracking of charged particles Identification of 511 keV gammas Time- and space coincidence of tracks + gammas High rate capability (trigger: 1 MHz, readout: 100 Hz)

DESIGN

Compact (radial dimension ~ 3 cm) Large solid angle (> 70 %) High granularity (8 K strips, 192 crystals) Operation at T ~ 140 K, B = 3 Tesla

Overview

- Capture - Cooling

Positrons

- transfer

- lifetime

Detector

- Tracking - 511 keV

Summary

Outlook

- accumulation rate

Antihydrogen Detector - R&D, Installation

Low temperature behaviour?

Significant R & D on low temperature effects of:

- light yield of pure CsI (50,000 photons / MeV @ 80 K,

to be compared with 3,200 / MeV @ 300 K)

- expansion coefficients (kapton, silicon, ceramics)
- electronic components (capacitors, amplifiers)

Full detector installed and commissioned Aug. 2001 Crystal readout upgrade (better S:N) March 2002

Overview Antiprotons - Capture - Cooling Positrons - accumulation ratu - transfer - lifetime Detector - Tracking - 511 keV Summary Outlook

Antihydrogen Detector - Antiprotons

Antiproton Annihilation (example)

- into three charged particles
- hits on strips (r-phi) and pads (z), inner/outer layer
- 3 crystals hit by tracks
- vertex reconstruction $\sigma \sim 3-4$ mm (curvature @ 3 T)

Capture
Cooling
Positrons
accumulation rate
transfer
lifetime
Detector
Tracking
511 keV
Summary
Outlook

Overview

Antihydrogen Detector - Z Position

Monitor shifts in antiproton position along z-axis

Antihydrogen Detector - Positron Trigger

Antihydrogen Detector - Gamma Energy

Overview Antiprotons - Capture - Cooling **Positrons** - accumulation rate - transfer - lifetime Detector - Tracking - 511 keV Summary Outlook

Energy spectrum of CsI crystal

- Clear peak at 511 keV, Compton edge, photo peak
- Good separation from background; Signal:Noise ~ 100
- Sufficient for clean antihydrogen detection
- uses avalanche photodiodes (10x improvement over photodiodes)

ATHENA / AD-1

Antihydrogen - Background

511 keV background from antiproton annihilation

- Antiproton annihilation produces neutral pions
- Decay gammas (5-500 MeV) convert in magnet
- Secondary positrons in shower annihilate
- Homogeneous, coincident 511 keV background
- Fake 'antihydrogen' events !

Antihydrogen signal

ATHENA / AD-1

Overview

- Capture

- Cooling

Positrons

- accumulation rate

Current status of ATHENA:

All milestones needed for antihydrogen production are in reach:

- 10⁵ antiprotons captured, stacked, cooled and transferred
- $> 10^8$ positrons accumulated and transferred
- Several hours lifetime
- Detector measures charged tracks and identifies 511 keV gammas
- Plasma diagnostics tools are in place (destructive and non-destructive)
- Experiment started up last Thursday

Outlook

Overview Antiprotons - Capture - Cooling **Positrons** - accumulation rate - transfer - lifetime **Detector** - Tracking - 511 keV Summary Outlook

Main goals for 2002

- Store $10^5 \bar{p}$ and $10^8 e^+$ <u>simultaneously</u> in recombination trap ($\tau \sim$ hours)
- Drive antiprotons through positron plasma with f ~ 10 1000 Hz (but also try other recombination schemes)
- Provide unambiguous evidence for antihydrogen production
- Optimize formation rate
- Measure energy distribution of antihydrogen (fraction below 0.05 meV !)
- Installation of 1S-2S laser equipment (243 nm)

