

High Precision Laser and Microwave Spectroscopy of Antiprotonic Helium

E. Widmann **ASACUSA collaboration** University of Tokyo

• High precision laser spectroscopy and CPT test for the proton/antiproton charge and mass

• Observation of hyperfine splitting and prospects of a CPT test for the proton/antiproton magnetic moment

ASACUSA collaboration @ CERN-AD

Asakusa Kannon Temple by Utagawa Hiroshige (1797-1858)

Atomic Spectroscopy And Collisions Using Slow Antiprotons

• University of Tokyo, Japan

• RIKEN, Saitama, Japan

- ~ 40 members
- Tokyo Institute of Technology, Japan
- University of Tsukuba, Japan
- Institute for Molecular Science, Okazaki, Japan
- Tokyo Metropolitan University, Japan
- CERN, Switzerland
- University of Aarhus, Denmark
- University of Wales Swansea, UK
- KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
- University of Debrecen, Hungary
- KVI, Groningen, The Netherlands
- PSI Villigen, Switzerland
- Ciril -Lab. Mixte CEA-CNRS, Caen Cedex, France
- GSI, Darmstadt, Germany
- Institut für Kernphysik, Universität Frankfurt
- Universität Freiburg, Germany
- St. Patrick's College, Maynooth, I reland
- The Queen's University of Belfast, I reland

Antiprotonic Helium Group

- E.W., R.S. Hayano, T. Ishikawa, J. Sakaguchi, T. Tasaki, H. Yamaguchi
 - Department of Physics, University of Tokyo
- J. Eades, M. Hori
 - CERN, Geneva,
 Switzerland
- D. Horvath
 - KFKI Budapest, Hungary
- B. Juhasz
 - University of Debrezen, Hungary
- H.A. Torii
 - Institute of Physics, University of Tokyo
- T. Yamazaki
 - RI KEN, Saitama, Japan

pHe⁺ "Atomcule" a naturally occurring trap for antiprotons

- Characteristics of both atom and molecule -> "atomcule"
- 3-body system
- 2 heavy "nuclei" with Z=1 and Z=-1
- electron can be treated by Born-Oppenheimer approximation
- ~ 3% of stopped antiprotons survive with average lifetime of ~ 3 μs

Experimental Setup at AD

Analog Measurement of Delayed Annihilation using Cerenkov counters and digital oscilloscope

5.3 MeV antiprotons are stopped in ~ 6 K 0.5 – 3 bar He gas

Microwave cavity 12.91 GHz: 28.8 mm diameter, 24.5 mm length

Setup at AD - area

Observed transitions in ⁴He

- Spectroscopy method: forced annihilation by laser transition meta-stable to short-lived state
 - LEAR: 10 transitions in ⁴He, 3 in ³He observed
 - First experimental proof that exotic particle is captured around

$$n_0 = \sqrt{M/m_e}$$

- AD: 8 new transitions in ⁴He, 4 new in ³He
 - Last transitions in v=0, 1 (UV) and v=4 cascade observed
- Systematic studies possible

Precise Measurement of Transition Wavelength and CPT test for Mass and Charge

CPT test of proton/antiproton charge and mass

Scaling factor for energy levels

$$Ry_{\infty}(\overline{p}) = \frac{M_{\overline{p}}}{m_{e}} \left(\frac{Q_{\overline{p}}}{e}\right)^{2} Ry_{\infty}$$

- Theory uses numerical values of proton
- + Deviation between experiment and theory for ΔE

$$\Delta_{\text{exp-th}} = f_M \frac{M_{\overline{p}} - M_p}{M_p} + f_Q \frac{Q_{\overline{p}} - Q_p}{Q_p}$$
$$\approx (f_M + f_Q) \delta M \approx (f_M + f_Q) \delta Q$$

- Since Q/M of proton/antiproton is equal to ~ 9x10⁻¹¹ (Gabrielse 1999)
- Simple estimate: $f_M=1$, $f_Q=2$
- Accurate calculation (Kino) that vary M,Q keeping Q/M const:
 - $f_{M+}f_Q=2.5 \dots 5$ depending on transition

Average of 4 measurements yields

Laser Spectroscopy at Ultra-low Density: Radio Frequency Quadrupole Decelerator

- RFQD: 5.3 MeV -> 20 120 keV (eff.~40%)
- Differential pumping + ultra-thin beam window
 - (~ 1 µm Mylar)
- high efficiency of stopping antiprotons at ultra-low densities (p < 1 mbar, T~20 K)

- Only data taken with RFQD at density 5 x 10¹⁷ cm⁻³ (factor 1000 lower than ever)
- Previous discrepancy removed, but new one exists
 - Problems for calculations for high-n, low-l states?
- Average over all data gives factor 3 better value for CPT test

$$\left|\frac{M_{\overline{p}} - M_{p}}{M_{p}}\right| \approx \left|\frac{Q_{\overline{p}} - Q_{p}}{Q_{p}}\right| < 1.8 \times 10^{-8}$$

PRELIMINARY

Details of QED corrections: 597 nm line

Quantity	Value	error			
Non-relativistic energy	501'972'376	(3)	MHz		
Relativistic corrections (e ⁻)	-27'556	(3)	MHz		
Rel. QED corrections	233		MHz		
Self energy	3'815		MHz		
Vacuum polarization	-123		MHz		
RMC	37		MHz		
Retardation	-35		MHz		
Two-loop corrections	1		MHz		
Finite size effect	2		MHz		
α^4 corrections	-3	(3)	MHz		
Total Korobov	501'948'718	(5)	MHz	(10)	ppb
Value Kino	501'948'828	(8)	MHz	(16)	ppb
Experiment 2000	501'949'010	(100)	MHz	(200)	ppb
Experiment 2001 PRELIM.	501'948'850	(50)	MHz	(100)	ppb

- Kino, Korobov use different variational expansions
- Deviation Korobov Kino ~ 200 ppb >> estimated theoret. error !!
- QCD effects (finite size etc.) play no role

Outlook - 2-photon transitions in pHe⁺

- Current precision (50 100 MHz) seems limit for pulsed laser system
 - pulse-amplified cw-laser needed
- Go to ultra-low density using RFQD:
 - antiprotons with 10 100 keV to be stopped in ~mbar helium gas done
 - Elimination of collisional shift and broadening
- Doppler-free two-photon spectroscopy
 - $\Delta n = \Delta I = 2$ transitions
 - virtual intermediate state close to real one
 - state of the art: 10 MHz
 - \bullet Gives 1 ppb for CPT test of M and Q
 - Proton mass only known to 2.1 ppb!

"Hyperfine" structure of $\bar{p}He^+$

- interactions of magnetic moments:
 - electron; $\vec{\mu}_e = g \mu_B \vec{S}_e$
 - pbar: $\vec{\mu}_{\overline{p}} = [g_s(\overline{p})\vec{S}_{\overline{p}} + g_I(\overline{p})\vec{L}_{\overline{p}}]\mu_{\overline{N}}$ (n,L)
- Dominant splitting: "Hyperfine":
 - $L_{\overline{p}} \cdot \vec{s}_{e}$ • sizeable because of large L of pbar.
- "Superhyperfine" splitting
 - Interaction antiproton spin with other moments
- Spin coupling scheme:

$$\vec{j} = \vec{L}_{\overline{p}} + \vec{S}_{e}$$

$$\vec{J} = \vec{j} + \vec{S}_{\overline{p}} = \vec{L}_{\overline{p}} + \vec{S}_e + \vec{S}_{\overline{p}}$$

$v_{HF} \sim 10 \dots 15 \text{ GHz}$ $v_{SHF} \sim 50 \dots 150 \text{ MHZ}$

 v_{SHF} sensitive to magnetic moment of pbar (known to $3x10^{-3}$) v_{HF} sensitive with suppression factor $7x10^{-3}$ Possible experimental resolution: 10^{-5} or better

Observation of HFS in laser transition

E. Widmann et al., PLB 404, 15 (1997)

- •1.7 GHz is difference of HF splitting of (37,35) and (38,34) state
- SHFS transitions cannot be observed due to Doppler broadening & laser bandwidth

Principle of laser-microwave-laser resonance experiment

0.15

0.10

0.05

200

300

400

500

Time relative to end of PMT gate (ns)

- microwave radiation
- Area under laser spike is proportional to population
 - Measure $R^{++} = I(f=f^+,t_2) / I(f=f^+,t_1)$

700

800

Microwave cavity for HFS measurement

- cavity for 13 GHz at < 10 K to reduce Doppler broadening
- Meshes to allow pbar and laser light to enter

- low Q (~100) to avoid mechanical tuning
- tuning via synthesizer and stub tuner

First Observation of Laser-Microwave-Laser Resonance

- Results about to be published
- Experimental accuracy: ~ 3 x 10⁻⁵

$\nu_{\text{HF}}{}^{+}$	12.895 96(34) GHz	27 ppm
ν_{HF}^{-}	12.924 67(29) GHz	23 ppm

Comparison to theory

- Comparison to theory favours most recent results of both groups
- Difference < 6 x 10⁻⁵
- Corresponds to theoretical uncertainty
 Omission of terms O(α²)

Significance of HFS measurement

e Her P

- Test of 3-body theory incl QED corrections
- Agreement ~ 6 × 10^{-5} : $|g_{I}(\bar{p}) 1| < 6 \times 10^{-5}$
 - First determination ever of orbital g-factor of either proton or antiproton
- SHFS: antiproton magnetic moment
 - from laser-microwave-laser experiment the difference $\nu_{\text{SHF}}\text{+}$ $\nu_{\text{SHF}}\text{-}$ can be determined
 - sensitive to μ_{pbar} with suppression factor (D. Bakalov, Nucl. Phys. A655 (1999) 301c)

$$\Delta \mu_{\bar{p}}^{\exp} = \frac{\Delta v_{\exp}}{\delta v / \delta \mu_{\bar{p}}} = \frac{3.4 \times 10^{-4} \text{ GHz}}{0.0065 \text{ GHz} / \mu_{N}} = 0.05 \mu_{N}; \text{ PDG: } \mu_{\bar{p}} = 2.800 \pm 0.008 \mu_{N}$$

- I mprovement in the determination of μ_{pbar} would require
 - I mprovement of resolution by factor > 6: difficult
 - -additional RF field of ~100 MHz (laser-mw-RF-laser resonance) or
 - Ultra-narrow band laser to resolve SHFS in laser transition, plus 100 MHz RF (laser-RF-laser resonance)
- Better way: Ground state hyperfine splitting of antihydrogen

Ground-State Hyperfine Structure of AntiHydrogen

- One of the most accurately measured quantities in physics
 - hydrogen maser, Ramsey (Nobel price 1989)
- spin-spin interaction electron -(anti)proton
- Leading term: Fermi contact term

$$v_{HF} = \frac{16}{3} \left(\frac{M_p}{M_p + m_e} \right)^3 \frac{m_e}{M_p} \frac{\mu_p}{\mu_N} \alpha^2 Ry$$

- a measurement of v_{HF} will directly give a value for the magnetic moment of pbar
- GS-HFS also tests form factors (structure) of (anti)proton!
 - finite size corrections ~ several ppm level

GS-HFS can be done with atomic beams

Summary & Outlook

- Precision spectroscopy constitutes stringent test of 3-body theory including QED corrections
- Laser spectroscopy:
 - Comparison to theory, together with measured cyclotron frequency, allows to set CPT limit for pbar charge and mass

$$\left|\frac{M_{\overline{p}} - M_{p}}{M_{p}}\right| \approx \left|\frac{Q_{\overline{p}} - Q_{p}}{Q_{p}}\right| < 6 \times 10^{-6}$$

- 8 times improvement over LEAR, further factor 3 expected from 2001 data
- Limit can be pushed to ppb level by development of new laser system
- Hyperfine Structure
 - excellent agreement with 3-body QED calculations: <6x10⁻⁵
 - 1st determination of orbital g-factor
 - Improvement needed to determine μ_{pbar}

