

Andrzej J. Buras (Technical University Munich)

Blois, June 18th, 2002

CKM Matrix and the Unitarity Triangle

Kobayashi-Maskawa Picture of CP Violation

CP Violation arises from a single phase δ in W[±] interactions of Quarks

Four Parameters: $(\theta_{12} \approx \theta_{cabibbo})$ $s_{12} = |V_{us}|, \quad s_{13} = |V_{ub}|, \quad s_{23} = |V_{cb}|, \quad \delta$

 $c_{ij} \equiv \cos \theta_{ij}$; $s_{ij} \equiv \sin \theta_{ij}$; $c_{13} \cong c_{23} \cong 1$

(AJB, Lautenbacher, Ostermaier, 94)

$$R_{b} \equiv \sqrt{\overline{\rho}^{2} + \overline{\eta}^{2}} = \left(1 - \frac{\lambda^{2}}{2}\right) \frac{1}{\lambda} \left| \frac{V_{ub}}{V_{cb}} \right| \qquad \frac{\text{Circle}}{(\overline{\rho}, \overline{\eta})} = (0,0)$$
$$R_{t} \equiv \sqrt{(1 - \overline{\rho})^{2} + \overline{\eta}^{2}} = \frac{1}{\lambda} \left| \frac{V_{td}}{V_{cb}} \right| \qquad \frac{\text{Circle}}{(\overline{\rho}, \overline{\eta})} = (1,0)$$

Particular Definition of λ , A, ρ , η

$$s_{12} \equiv \lambda$$

$$s_{23} \equiv \mathbf{A} \ \lambda^2$$

$$s_{13} e^{i\delta} \equiv \mathbf{A} \ \lambda^3 (\rho - i\eta)$$

BLO: Phys.Rev. (94); (Schmidtler, Schubert) At $O(\lambda^5)$ equivalent to (Branco, Lavoura, 88)

Basic Virtues of this Definition:

$$\begin{aligned} V_{us} &= \lambda + 0 \left(\lambda^7 \right) \\ V_{ub} &= A \lambda^3 \left(\rho - i \eta \right) \\ V_{cb} &= A \lambda^2 + 0 \left(\lambda^8 \right) \\ V_{td} &= A \lambda^3 \left(1 - \overline{\rho} - i \overline{\eta} \right) \end{aligned}$$

The apex of UT given by $\left(\overline{\rho}, \overline{\eta} \right)$ (BLO)

Unitarity Triangle

An Important Target of Particle Physics

$$J_{CP} = \lambda^{2} \left| V_{cb} \right|^{2} \overline{\eta} = 2 \cdot \bigtriangleup$$

Area of unrescaled UT

Information from Tree Level Decays

Results on $|V_{ub}|$ and $|V_{cb}|$

Parameter	Value	Gaussian	Uniform
		σ	half-width
$ V_{us} $	0.221	0.002	-
$ V_{cb} $ (excl.)	42.1 · 10 ⁻³	$2.1 \cdot 10^{-3}$	-
$ V_{cb} $ (incl.)	40.4 · 10 ⁻³ (Artuso Barberio)	$0.7 \cdot 10^{-3}$	0.8 · 10 ⁻³
$ V_{ub} $ (excl.)	32.5 · 10 ⁻⁴	$2.9 \cdot 10^{-4}$	$5.5 \cdot 10^{-4}$
$ V_{ub} $ (incl.)	40.9 · 10-4	$4.6 \cdot 10^{-4}$	3.6 · 10-4

$ V_{cb} $ (incl.) $\bigstar 41.7 \cdot 10^{-3}$ (CKM)	0.7 · 10-3	0.8 · 10 ⁻³
--	------------	------------------------

 R_b = Independent of New Physics R_t , β , γ = Can be affected by New Physics

Hunting Δ with Rare and CP Decays

<u>2011:</u>

Quark Mixing and CP Violation closely related in the St. Model

Theoretical Framework

The Problem of Strong Interactions

 $\left\langle \overline{\mathrm{K}}^{0} \middle| \left(\overline{\mathrm{s}} \mathrm{d} \right)_{\mathrm{V}-\mathrm{A}} \left(\overline{\mathrm{s}} \mathrm{d} \right)_{\mathrm{V}-\mathrm{A}} \middle| \mathrm{K}^{0} \right\rangle = \frac{8}{3} \mathbf{\hat{B}}_{\mathrm{K}} F_{\mathrm{K}}^{2} m_{\mathrm{K}}^{2} \left[\alpha_{\mathrm{s}}(\mu) \right]^{2/9}$

Possible Dirac Structures in
$$K^0 - \overline{K}^0$$
 and $B^0_{d,s} - \overline{B}^0_{d,s}$

SM:
$$\gamma_{\mu} \left(1 - \gamma_{5}\right) \otimes \gamma^{\mu} \left(1 - \gamma_{5}\right)$$

Beyond SM:

$$\begin{array}{l} \gamma_{\mu}\left(1-\gamma_{5}\right)\,\otimes\,\gamma^{\mu}\left(1+\gamma_{5}\right)\\ \left(1-\gamma_{5}\right)\,\otimes\,\left(1+\gamma_{5}\right)\\ \left(1-\gamma_{5}\right)\,\otimes\,\left(1-\gamma_{5}\right)\\ \sigma_{\mu\nu}\left(1-\gamma_{5}\right)\,\otimes\,\sigma^{\mu\nu}\left(1-\gamma_{5}\right) \end{array}$$

MSSM with large tanβ General Supersymmetric Models Models with complicated Higgs System

NLO
$$\left[\eta_{QCD}^{i}\right]^{New}$$
: Ciuchini, Franco, Lubicz,
Martinelli, Scimemi, Silvestrini
AJB, Misiak, Urban, Jäger

General Structure in Models with Minimal Flavour Violation

Ciuchini, Degrassi, Gambino, Giudice; AJB, Gambino, Gorbahn, Jäger, Silvestrini;

No new Operators (Dirac and Colour Structures) beyond those present in the SM

Flavour Changing Transitions governed by CKM. No new complex phases beyond those present in the SM

$$A(Decay) = B_i \eta^i_{QCD} V^i_{CKM} \left[F^i_{SM} + F^i_{New} \right]$$

real

Examples: SM MSSM at not too large $tan\beta =$

Universal Unitarity Triangle

AJB, Gambino, Gorbahn, Jäger, Silvestrini (00)

Examples

$$R_{t} = 0.94 \sqrt{\frac{\Delta M_{d}}{0.487/\text{ps}}} \sqrt{\frac{15.0/\text{ps}}{\Delta M_{s}}} \left[\frac{\xi}{1.15}\right]$$

$$a_{\psi K_s} = \sin 2\beta$$

Standard Analysis of Unitarity Triangle

$$R_{t} = 0.94 \sqrt{\frac{\Delta M_{d}}{0.487/\text{ ps}}} \sqrt{\frac{15.0/\text{ ps}}{\Delta M_{s}}} \left[\frac{\xi}{1.15}\right]$$

 $\Delta M_s > 14.9 / ps$ LEP (SLD)

$$A_{\rm CP}(\psi K_{\rm S}) \equiv -a_{\psi K_{\rm S}}\sin(\Delta M_{\rm d}t)$$

$$a_{\psi K_S} = \sin 2\beta$$
 (SM)

Different Treatments of Errors

Particle Data Group

Gilman, Kleinknecht, Renk

"Gaussian" Approach

Ali + London; Mele, ...

Bayesian Approach

Ciuchini, D'Agostini, Franco, Lubicz, Martinelli, Parodi, Roudeau, Stocchi

Frequentist Approach

Höcker, Lacker, Laplace, Diberder

95% CL Scan Method

Plaszczynski, Shune; BaBar

Basic Result from Working Group III (CKM Workshop, CERN, Feb. 2002)

AJB, H. Lacker, F. Parodi, A. Stocchi First report: CERN Courier, May 2002 (R. Forty)

The main difference between Bayesian and Frequentists approaches results from the different treatments of errors in the input parameters

Bayesian

<u>Convolution</u> of statistical and systematic (TH) errors

Frequentist :

: <u>Linear addition</u> of statistical and systematic (TH) errors

If the two fitting programs are fed with the same input likelihoods the allowed $(\overline{\rho}, \overline{\eta})$ regions are very similar

Input for the Unitarity Triangle

Parameter	Value	Gaussian	Uniform
		σ	half-width
$ V_{us} $	0.221	0.002	-
$ V_{cb} $ (excl.)	$42.1 \cdot 10^{-3}$	$2.1 \cdot 10^{-3}$	-
$ V_{cb} $ (incl.)	40.4 · 10 ⁻³ (Artuso Barberio)	$0.7 \cdot 10^{-3}$	$0.8 \cdot 10^{-3}$
$ V_{ub} $ (excl.)	32.5 · 10 ⁻⁴	$2.9 \cdot 10^{-4}$	$5.5 \cdot 10^{-4}$
$ V_{ub} $ (incl.)	40.9 · 10 ⁻⁴	$4.6 \cdot 10^{-4}$	3.6 · 10-4
ΔM_d	0.496 ps ⁻¹	0.007 ps ⁻¹	-
ΔM_{s}	>14.9 ps ⁻¹ at 95% C.L.	sensitivity	19.3 ps ⁻¹
m _t	167 GeV	5 GeV	-
$f_{_{B_d}}\sqrt{\hat{B}_{_{B_d}}}$	230 MeV	30 MeV	15 MeV
$\xi = \frac{f_{B_s} \sqrt{\hat{B}_{B_s}}}{f_{B_d} \sqrt{\hat{B}_{B_d}}}$	1.16	0.03	0.04
B _K	0.86	0.06	0.14
sin 2β	0.78	0.08	-

$ V_{cb} $ (incl.)	★ 41.7 · 10 ⁻³ (CKM)	$0.7 \cdot 10^{-3}$	0.8 · 10 ⁻³
--------------------	---------------------------------	---------------------	------------------------

Universal Unitarity Triangle 2002

AJB, Parodi, Stocchi

Use only quantities that are independent of parameters specific to a given Minimal Flavour Violation model

Standard Model Unitarity Triangle

(Parodi, Stocchi)

Bayesian Output (June 2002)

AJB, Parodi, Stocchi hep-ph/0206

Input: CKM-Workshop + $sin 2\beta = 0.78 \pm 0.08$

95% Probability Regions

	SM	UUT	
η	0.292-0.406	0.274-0.418	
ρ	0.148-0.301	0.114-0.322	
sin 2β	0.665-0.821	0.655-0.822	
$\sin 2\alpha$	-0.66-0.11	-0.78-0.29	*
γ	$(46.1-68.6)^0$	$(42.1-73.8)^0$	*
R _b	0.365-0.468	0.365-0.470	
R _t	0.766-0.934	0.741-0.972	*
$ V_{td} /10^{-3}$	7.0-8.4	6.7-8.8	
$\left \text{Im}\lambda_{t} \right / 10^{-4}$	1.08-1.46	1.00-1.53	$\left(\lambda_{t}=V_{ts}^{*}V_{td}\right.$
$\left \mathbf{V}_{\mathrm{td}}\right / \left \mathbf{V}_{\mathrm{ts}}\right $	0.174-0.211	0.168-0.220	
$\Delta M_{s}(ps^{-1})$	15.1-21.0	14.1-22.0	

Not much room for MFV-models (low tan β) that differ from the SM

Measurements of γ and ΔM_s will be very important to find out whether <u>new phases</u> and/or <u>new operators</u> necessary.

Outlook

Future Targets
$$R_b$$
 $\frac{\Delta V_{cb}}{V_{cb}} \approx 2\%$ $\frac{\Delta V_{ub}}{V_{ub}} \approx 5\%$ $\Delta M_s (B_s^0 - \overline{B}_s^0); \xi_{th}$ \blacksquare $\Delta \sin 2\beta < 0.05$

 α , β , γ from various B-Decays

$$\begin{cases} \mathbf{K}^{+} \to \pi^{+} \nu \overline{\nu} \\ \mathbf{K}_{\mathrm{L}} \to \pi^{0} \nu \overline{\nu} \end{cases} \implies \begin{cases} \sin 2\beta, \ \overline{\eta} \\ |\mathbf{V}_{\mathrm{td}}| \end{cases}$$

Parameters in Electroweak Gauge Sector

<u>Until 2001</u>

$$|V_{us}|, |V_{cb}|, \overline{\rho}, \overline{\eta}$$

For the next years

$$|V_{us}|, |V_{cb}|, R_t, \sin 2\beta$$

appears like a better choice. Or, even better:

$$\left|V_{us}\right|, \left|V_{cb}\right|, R_{t}, \beta$$

Fundamental Flavour Parameters

(June 2002) AJB, Parodi, Stocchi

$$|V_{us}| = 0.221 \pm 0.002$$
$$|V_{cb}| = (40.6 \pm 0.8) \cdot 10^{-3}$$
$$R_{t} = 0.85 \pm 0.04$$
$$\beta = (24 \pm 2)^{\circ}$$

$$(\sin 2\beta = 0.74 \pm 0.05)$$

(AJB, Parodi, Stocchi)

Leading Strategies for $(\overline{\rho}, \overline{\eta})$

(AJB, Parodi, Stocchi)

1989-1999

Electroweak Precision Studies

CKM Precision Studies

 $\lambda, A, \overline{\rho}, \overline{\eta}, m_t$

with the hope to discover **New Physics** and learn about **Flavour Dynamics**

The Future until 2011 should be very exciting