THEORETICAL INTERPRETATION OF ϵ'/ϵ

MATTER-ANTIMATTER ASYMMETRY XIVth RENCONTRES DE BLOIS 16th - 22nd June 2002 BLOIS JUNE 18th 2002

Guido Martinelli

Plan of the talk

- <u>General Theoretical Framework;</u>
- $\underline{\varepsilon'}_{\underline{\varepsilon}}$ in the Standard Model ;
- The operators of the Effective Weak
- Hamiltonian;
- Calculation of the operator matrix elements;
- <u>ε'</u>/ ε Beyond the SM;
- Conclusions and outlook.

General Considerations:Consequences of a Symmetry $[S, H] = 0 \rightarrow |E, p, s >$ We may find states which are simultaneously eigenstates of
S and of the Energy

Ç₽ Violation in the Neutral Kaon System

$$\eta^{00} = \frac{\langle \pi^{0}\pi^{0}/H_{W} | K_{L} \rangle}{\langle \pi^{0}\pi^{0}/H_{W} | K_{S} \rangle} \sim \epsilon - 2 \epsilon'$$

$$\eta^{+-} = \frac{\langle \pi^{+}\pi^{-}/H_{W} | K_{S} \rangle}{\langle \pi^{+}\pi^{-}/H_{W} | K_{S} \rangle} \sim \epsilon + \epsilon' \left| \frac{\eta^{+-}}{\eta^{00}} \right|^{2} \sim 1 + 6 \operatorname{Re} (\epsilon'/\epsilon)$$

Conventionally:

$$/ K_{S} > = / K_{1} >_{CP=+1} + \delta / K_{2} >_{CP=-1}$$
$$/ K_{L} > = / K_{2} >_{CP=-1} + \delta / K_{1} >_{CP=+1}$$

$$A_{0} e^{i \mathbf{d}_{0}} = \langle (p p)_{l=0} | H_{W} | K^{0} \rangle$$

$$A_{2} e^{i \mathbf{d}_{2}} = \langle (p p)_{l=2} | H_{W} | K^{0} \rangle$$
Where $\delta_{0,2}$ is the strong interaction phase
(Watson theorem) and the weak phase is hidden
in $A_{0,2}$ [\mathcal{P} if $\operatorname{Im}[A_{0}^{*} A_{2}] \neq 0$
$$\epsilon' = i \underbrace{e^{i(\mathbf{d}_{2} \cdot \mathbf{d}_{0})}_{V2} \omega}_{V2} \left[\underbrace{\operatorname{Im} A_{2}}_{\operatorname{Re} A_{2}} - \underbrace{\operatorname{Im} A_{0}}_{\operatorname{Re} A_{0}} \right]$$

 $\omega = \text{Re } A_2 / \text{Re } A_0 \sim 1/22$

In the Standard Model

$$\lambda_t = V_{td} V_{ts}^* \qquad r = G_F \omega / (2 |\varepsilon| \operatorname{Re} A_0)$$

Extracting the phases:

$$\epsilon' \epsilon = \operatorname{Im} \lambda_t e^{i(\mathbf{p}/2 + \mathbf{d}_2 - \mathbf{d}_0 - \mathbf{f}_e)} r \left[|A_0| - \frac{1}{\omega} |A_2| \right]$$

GENERAL FRAMEWORK

$$\begin{aligned} \mathsf{H}^{\mathbf{D}S=1} &= G_{\mathbf{F}} / v2 \, V_{ud} \, V_{us}^{*} \left[(1-\tau) \, \Sigma_{i=1,2} \, z_{i} \left(Q_{i} - Q_{i}^{c} \right) + \tau \, \Sigma_{i=1,10} \left(\, z_{i} + y_{i} \, \right) \, Q_{i} \ \end{aligned}$$

Where y_i and z_i are short distance coefficients, which are known in perturbation theory at the NLO (Buras et al. + Ciuchini et al.) $\tau = -V_{ts}^* V_{td} / V_{us}^* V_{ud}$

We have to compute $A^{I=0,2}_{i} = \langle (p p)_{I=0,2} | Q_{i} | K \rangle$ with a non perturbative technique (lattice, QCD sum rules, 1/N expansion etc.) New local four-fermion operators are generated

$$Q_1 = (\overline{s_L}^A \gamma_\mu u_L^B) (\overline{u_L}^B \gamma_\mu d_L^A)$$
$$Q_2 = (\overline{s_L}^A \gamma_\mu u_L^A) (\overline{u_L}^B \gamma_\mu d_L^B)$$

Current-Current

$$Q_{3,5} = (\overline{s}_{R}^{A} \gamma_{\mu} d_{L}^{A})?_{q} (\overline{q}_{L,R}^{B} \gamma_{\mu} q_{L,R}^{B})$$
Gluon
$$Q_{4,6} = (\overline{s}_{R}^{A} \gamma_{\mu} d_{L}^{B})?_{q} (\overline{q}_{L,R}^{B} \gamma_{\mu} q_{L,R}^{A})$$
Penguins

 $Q_{7,9} = 3/2(\bar{s}_{R}^{A}\gamma_{\mu}d_{L}^{A})?_{q}e_{q}(\bar{q}_{R,L}^{B}\gamma_{\mu}q_{R,L}^{B}) \text{ Electroweak}$ $Q_{8,10} = 3/2(\bar{s}_{R}^{A}\gamma_{\mu}d_{L}^{B})?_{q}e_{q}(\bar{q}_{R,L}^{B}\gamma_{\mu}q_{R,L}^{A}) \text{ Penguins}$

+ Chromomagnetic end electromagnetic operators to be discussed in the following

$A_{0} = ?_{i} C_{i}(\mu) (p p) IQ_{i}(\mu) IK (1 - \Omega_{IR})$ **ISOSPIN** μ = renormalization scale **BREAKING** µ-dependence cancels if operator matrix elements are consistently computed

$A_2 = ?_i C_i(\mu) (p p) IQ_i(\mu) IK'_{I=2}$

$$\begin{split} \Omega_{\rm IB} &= 0.25 \pm 0.08 \; (\text{Munich from Buras \& Gerard}) \\ &= 0.25 \pm 0.15 \; (\text{Rome Group}) &= 0.16 \pm 0.03 \; (\text{Ecker et al.}) \\ &= 0.10 \pm 0.20 \; \text{Gardner \& Valencia, Maltman \& Wolf, Cirigliano \& al.} \end{split}$$

THE SCALE PROBLEM:

Effective theories prefer low scales, Perturbation Theory prefers large scales

if the scale mis too low

problems from higher dimensional operators

(Cirigliano, Donoghue, Golowich)

- it is illusory to think that the problem is solved by using dimensional regularization

on the lattice this problem is called DISCRETIZATION ERRORS

(reduced by using improved actions and/or scales μ > 2-4 GeV

VACUUM SATURATION & B-PARAMETERS

 $A = ?_{i} C_{i}(\mu) (p p) Q_{i}(\mu) K$

$$(p p) |Q_i(\mu)| K = (p p) |Q_i| K _{V|A} B (\mu)$$

 μ -dependence of VIA matrix elements is not consistent With that of the Wilson coefficients e.g. (pp) IQ₉ I K > _{I=2,VIA} = 2/3 f_p (M²_K - M²_p)

In order to explain the $\Delta I=1/2$ enhancement the B-parameters of Q_1 and Q_2 should be of order 4 !!!

Relative contribution of the OPS

The Buras Formula that should NOT be used but is presented by everyone

$$\lambda_t = V_{td} V_{ts}^* = (1.1 \pm 0.2) 10^{-4}$$

 $\epsilon'_{\ell} \epsilon = 13 \text{ Im } \lambda_t \left[\frac{110 \text{ MeV}}{m_s(\mu)}^2 \left[\mathsf{B}_6 (1 - \Omega_{\text{IB}}) - 0.4 \text{ B}_8 \right] \right]$

<u>a value of B_6 MUCH LARGER than 1</u> (2 ÷ 3) is needed to explain the experiments

The situation worsen if also B_8 is larger than 1

Theoretical Methods for the Matrix Elements (ME)

- Lattice QCD Rome Group, M. Ciuchini & al.
- NLO Accuracy and consistent matching
- χPT (now at the next to leading order) and quenching
- no realistic calculation of <Q₆>
- Fenomenological Approach Munich A.Buras & al.
- NLO Accuracy and consistent matching
- no results for $<Q_{6.8}>$ which are taken elsewhere
- <u>Chiral quark model</u> **Trieste** S.Bertolini & al.
- all ME computed with the same method
- model dependence, quadratic divergencies, matching

 \bigcirc

 $(\mathbf{ })$

 (\mathbf{F})

(:)

 $(\mathbf{\dot{e}})$

 \bigcirc

(;;)

Theoretical Methods for the Matrix Elements (ME)

- <u>1/N expansion+</u> χ PT Munich, Dortmunt, Valencia,...
- < Q_{6,8} > are computed
- 1/N corrections only partially computed
- quadratic divergencies, matching

Model calculations suggest that the enhancement of < Q_6 > may come from large higher-order corrections in the chiral expansion, typical of <u>I=0 pp states</u> (Q_1 and Q_2 ?)

 $(\mathbf{ })$

 $(\mathbf{\hat{r}})$

A related physical effect is given the large Final State Interactions expected in I=0 channels, which are taken into account only at the lowest orders of the chiral expansion. A strong enhancement can be obtained from resummation (and unitarization) of FSI using the Omnès-Mushkelishvili approach (Truong, Pich & Pallante); quantitave results controversial (Buras & al., Colangelo & al. etc. etc.) In my opinion only the Lattice approach will be able to give quantitative answers with controlled systematic errors

Quenching for DI = 1/2 transitions !

Theoretical Novelties

- on finite volumes
 L. Lellouch & M. Luscher Commun. Math. Phys. 219 (2001) 31 (LL) and D.Lin, G.M., C. Sachrajda and M. Testa hep-lat/0104006 (LMST)
- <u>Chiral Perturbation Theory for</u> < Q_{+,1,2,7,8} V.
 Cirigliano and E. Golowich Phys. Lett. B475 (2000) 351;
 M. Golterman and E. Pallante JHEP 0008 (2000) 023;
 D.Lin, G.M., E. Pallante, C. Sachrajda and G. Villadoro,
 Rome prep. 1337 (quenched, unquenched, finite and infinite volumes) and in preparation.
- FSI and extrapolation to the physical point Truong, E. Pallante and A. Pich (PP) Phys. Rev. Lett. 84 (2000) 2568; see also A. Buras at al. Phys. Lett. B480 (2000) 80;

The IR problem arises from two sources:

• The (unavoidable) continuation of the theory to Euclidean space-time (Maiani-Testa theorem)

• The use of a finite volume in numerical simulations

An important step towards the solution of the IR problem has been achieved by L. Lellouch and M. Lüscher (LL), who derived a relation between the K 🖾 p p matrix elements in a finite volume and the physical amplitudes

presented by L. Lellouch at Latt2000

Commun.Math.Phys.219:31-44,2001 e-Print Archive: hep-lat/0003023

Here I discuss an alternative derivation based on the behaviour of correlators of local operator when $V \rightarrow \infty$ D. Lin, G.M., C. Sachrajda and M. Testa hep-lat/0104006 (LMST) The finite-volume Euclidean matrix elements are related to the absolute values of the Physical Amplitudes $|\langle \pi\pi E | Q(0) | K \rangle|$ by comparing, at large values of V, finite volume correlators to the infinite volume ones $|\langle \pi\pi E | Q(0) | K \rangle| = vF \langle \pi\pi n | Q(0) | K \rangle_{v}$ $F = 32 \pi^2 V^2 \rho_v(E) E m_K/k(E)$ where $k(E) = v E^2/4 - m_{\pi}^2$ and

 $\rho_V(E) = (q \phi'(q) + k \delta'(k))/4 \pi k^2$ is the expression which one would heuristically derive by interpreting $\rho_V(E)$ as the density of states in a finite volume (D. Lin, G.M., C. Sachrajda and M. Testa)

the corrections are exponentially small in the volume

On the other hand the phase-shift can be extracted from the two-pion energy according to (Lüscher):

$$W_n = 2 V m_{\pi}^2 + k^2 \qquad n \pi - \delta(k) = \phi(q)$$

for the chiral behaviour of $\langle Q_4 \rangle$ see for example Pallante and Golterman and Lin; chiral logs and extra operators not yet included; $\cos \delta(E) \sim 1$

THE CHIRAL BEHAVIOUR OF $\langle p \ p \ | H_W | K \rangle_{I=2}$ by the SPQ_{cd}R Collaboration and a comparison with JLQCD Phys. Rev. D58 (1998) 054503

no chiral logs included yet, analysis under way

Lattice QCD finds $B_{K} = 0.86$ and a value of $\langle p p | H_{W} | K \rangle_{I=2}$ compatible with exps

THE CHIRAL BEHAVIOUR FOR (p p |Q 8 K)

Lin+gm+Pallante+Sachrajda+Villadoro

Results for	Q 7,8 and com	parison with oth	ner determination	ons (MS)
Lattice CPI	RBC ~ 0.9 PACS ~ 0.8	<q <sub="">8></q>	<q <sub="">7></q>	inatV
χQM 0.75 ± 0.03	K'šš (SPQ _{cd} R) NEW!!	0.53 ± 0.06	preli 0.02 ± 0.01	IIIIar J
GeV ³ results	J. Donoghu e and E. Golowich M. Knecht, S. Peris and E. De	2.2 ± 0.7 3.5 ± 1.1	0.22 ± 0.05 0.11 ± 0.03	
out of the Table at different scales; from S. Bertolini review	Rafael Don ini et al. (Rome) D. Becirevic et al. (SPQ _{ed} R) NEW!!	0.5 ± 0.1 0.49 ± 0.06	0.11 ± 0.04 0.10(2)(1)	
Bijnens & Pra	des 1.2 ± 0.5 Ham	bye (1/N) ~ 0.36 ->	> 0.63	om K 🐼 p

Lattice results for the operators contributing to A_0

For A₂ the result for the strong interaction phase-shift $\delta_2(k)$ is in agreement with the experimental value, and the dependence on masses and momenta is that expected in χPT (Papinutto, SPQ_{cd}R Collaboration at Lattice 2001)

For A_0 the result for $\delta_0(k)$ is in TOTAL DISAGREEMENT with the experimental value, and the dependence on masses and momenta is NOT that expected in χPT

I=0 pp States in the Quenched Theory (Lack of Unitarity)

1) the final state interaction phase is not universal, since it depends on the operator used to create the two-pion state. This is not surprising, since the basis of Watson theorem is unitarity;

2) the Lüscher quantization condition for the two-pion energy levels does not hold. Consequently it is not possible to take the infinite volume limit at constant physics, namely with a fixed value of W;
 3) a related consequence is that the LL relation between the absolute value of the

3) a related consequence is that the <u>LL relation between</u> the absolute value of the physical amplitudes and the finite volume matrix elements is no more valid;

4) whereas it is usually possible to extract the lattice amplitudes by constructing suitable time-independent ratios of correlation functions, this procedure fails in the quenched theory because the time-dependence of correlation functions corresponding to the same external states is not the same

D. Lin, G.M., E. Pallante, C. Sachrajda and G. Villadoro in preparation.

There could be a way-out

$\Delta I = 1/2$ and ϵ'/ϵ

• K \triangleleft p p from K \triangleleft p and K \triangleleft

calculation

ns $(Q_7 \text{ and } Q_8)$

and Q_2)

• Direct K

• $\Delta I = 1/2$ decays

• ϵ'/ϵ electrope

• ϵ'/ϵ strong penguns (Q₆)

Physics Results from RBC and CP-PACS

no lattice details here

	$Re(A_0)$	Re(A ₂)	$Re(A_0)$ $Re(A_2)$	3/3	Total
RBC	29÷31 10 ⁻⁸	1.1 ÷1.2 10 ⁻⁸	24÷27	-4 ÷ -8 10 ⁻⁴	Disagrement with
CP PACS	16÷21 10 ⁻⁸	1.3÷1.5 10 ⁻⁸	9÷12	-2 ÷ -7 10 ⁻⁴	experiments ! (and other th. determinations)
EXP	33.3 10 ⁻⁸	1.5 10 ⁻⁸	22.2	17.2 ± 1.8 10 ⁻⁴	Opposite sign !
					New Physics?

Physics Results from RBC and CP-PACS talks by Mawhinney,Calin,Blum and Soni (RBC)								
• Chirality	ε'/ε	$\frac{\text{Re}(A_0)}{\text{Re}(A_2)}$	Re(A ₂)	Re(A ₀)				
• Low Ren.Scale	-4 ÷ -8 10 ⁻⁴	24÷27	1.1 ÷1.2 10 ⁻⁸	29÷31 10 ⁻⁸	RBC			
 Quenching FSI 	-2 ÷ -7 10 ⁻⁴	9÷12	1.3÷1.5 10 ⁻⁸	16÷21 10 ⁻⁸	CP PACS			
New Physics A combination ?	17.2 ± 1.8 10 ⁻⁴	22.2	1.5 10 ⁻⁸	33.3 10 ⁻⁸	EXP			

Even by doubling O_6 one cannot agree with the data

 $K \bigotimes p p$ and Staggered Fermions (Poster by W.Lee) will certainly help to clarify the situation I am not allowed to quote any number

Chromomagnetic operators vs ϵ'/ϵ and ϵ

$$\mathsf{H}_{\mathsf{g}} = \mathsf{C}^{+}_{\mathsf{g}}\mathsf{O}^{+}_{\mathsf{g}} + \mathsf{C}^{-}_{\mathsf{g}}\mathsf{O}^{-}_{\mathsf{g}}$$

$$O_{g}^{\pm} = \underline{g}_{16\pi^{2}} (s_{L} \sigma^{m} t^{a} d_{R} G_{m}^{a} \pm s_{R} \sigma^{m} t^{a} d_{L} G_{m}^{a})$$

- It contributes also in the Standard Model (but it is chirally supressed $\propto m_K^4$)
- Beyond the SM can give important contributions to E' (Masiero and Murayama)
- It is potentially dangerous for ε (Murayama et. al., D'Ambrosio, Isidori and G.M.)
- It enhances CP violation in K $\rightarrow \pi \pi \pi \pi$ decays (D'Ambrosio, Isidori and G.M.)
- Its cousin $O^{\pm}_{\underline{\sigma}}$ gives important effects in $K_{L} \rightarrow \pi^{0} e^{+} e^{-}$

($\langle p^0 \mid Q_g^{+} \mid K^0 \rangle$ computed by D. Becirevic et al. , The SPQ_{cd}R Collaboration, Phys.Lett. B501 (2001) 98)

The Chromomagnetic operator

$$O_{\mathbf{S}} = m_{\mathbf{s}} d_{\mathbf{L}} \sigma_{\mathbf{m}} t^{\mathbf{a}} s_{\mathbf{R}} G^{\mathbf{m}\mathbf{a}}$$
mass term necessary to the helicity flip $S_{\mathbf{L}} \rightarrow S_{\mathbf{R}}$

$$\int gluon$$

$$\langle \pi \pi / O_{\mathbf{s}} / K \rangle \sim O(M_{\mathbf{K}}^{4}) \qquad [\langle \pi \pi / H_{\mathbf{W}} / K \rangle \sim O(M_{\mathbf{K}}^{2})]$$

s s s s d d d m_s m_s Masiero-Murayama m_s $\alpha_s \delta^{12}_{LR} (M^2_W/m^2_q) m_g^2$ The chromomagnetic operator may have large effects in e'/e

$$(m_Q^2)_{ij} = m_{average}^2 \mathbf{1}_{ij} + \Delta m_{ij}^2 \mathbf{d}_{ij} = \Delta m_{ij}^2 / m_{average}^2$$

from SUSY flavour mixing define $\delta_{+} = \delta^{21}_{LR} \pm (\delta^{12}_{LR})^{*}$ then δ_+ $K \longrightarrow \pi$ $K \longrightarrow 3 \pi$ $K_{L} \longrightarrow \pi^{0} e^{+} e^{-}$ parity even $K \longrightarrow 2\pi$ δ o_ → parity odd • π in $K^0 - K^0$ mixing (see next page) К

$$\propto \text{Im}(\delta_{+}) \times 4.8 \ 10^{-13} \ \text{GeV}^2 \ \text{K}_{1}$$

The K-factor K_1 accounts for other contributions besides the π^0 , as the etas, more particle states, etc.

Boxes 1-mag 2-mag K_L p⁰ e⁺ e⁻ e'/ e→

$Im(\mathbf{d}_{+}) \text{ or } Im(\mathbf{d}_{-})$ $Im(\mathbf{d}_{+})$ $Im(\mathbf{d}_{+})$ $Im(\mathbf{d}_{+})^{2}$ $Im(\mathbf{d}_{-})$

If the K-factor K_1 is not too small, the strongest limits on $Im(\mathbf{d}_{+})$ come from A_{1mag} in $K^0 - \overline{K}^0$ mixing $(10^{-4} - 10^{-5})$!! D'Ambrosio, Isidori and G.M.; X-G He, Murayama, Pakvasa and Valencia

Conclusions and Outlook

MANY PROGRESSES

1) The possibility of computing the physical $K \bigotimes p p$ amplitude has been demonstrated by LL (see also LMST);

2) For the first time there is a signal for $K \bigotimes p p$ penguin-like contractions of $Q_{1,2,6}$. More work is needed to reduce the uncertainties (QUENCHING !!!);

3) The new results with Domain Wall Fermions for K $\langle \Sigma \rangle$ p amplitudes are really puzzling;

4) The chiral extrapolation to the physical point (quenched, unquenched, infinite and finite volumes) is <u>critical;</u>

4) The extension of LL/LMST to non-leptonic B-decays (e.g. B ≪ K p), for which the two light mesons are above the inelastic threshold, remains an open problem worth being investigated.