A study of the martian atmosphere using OMEGA/Mars Express and IR ground-based data

(1) LESIA, Observatoire de Paris, France
(2) IAS, Orsay, France
(3) LPI, Houston, USA
(4) U. C. Davis, USA
(5) LMD, Paris, France
(6) SA, Paris, France
(7) U. Michigan, USA
The data sets

- **OMEGA/Mars Express**
 - Spectral range: 0.3-5.2 μm
 - Spectral resolution: 14nm at 1.0-2.7μm
 - IFOV: 1.2 mrad (300m at the surface near periapsis)
 - Results: H₂O mapping, study of CO over Hellas

- **TEXES, 3m-IRTF, Mauna Kea (Lacy et al.,2002)**
 - Spectral range: 1230-1245 cm⁻¹ (8.1 μm), 1348-1353 cm⁻¹ (7.4 μm)
 - Spectral resolution: 0.016 cm⁻¹ (R = 7.7 10⁴)
 - Spatial resolution: 1.5x1.5 arcsec after convolution
 - Dates: (1) June 2003 (Ls = 206°); (2) Dec.2005 (Ls = 332°)
 - Results: First H₂O₂ IR detection, H₂O and H₂O₂ mapping
H₂O mapping with OMEGA Mars Express

- Monitoring of H₂O band depth at 2.6 µm
- H₂O column density retrieved through a grid of curves of growth
- The surface pressure is taken from GCM/MOLA data base

Results:
- Ls = 330-40°: H₂O mapping with latitude and longitude
- Ls = 93-126°: H₂O mapping of the north polar cap

References:
- Encrenaz et al., Astron. Astrophys. 441, L9-L12, 2005
- Melchiorri et al., submitted to Plan. Space Sci., 2006
CO$_2$ and H$_2$O signatures in the OMEGA spectral ratios (Foot/Summit)

Strongest H$_2$O band at 2.6 µm

H$_2$O = 1.5 10^{-4}, 3 10^{-4}, 6 10^{-4}
H$_2$O column density, Ls = 330 -40°
(Maximum value = 20 pr-µm)
H$_2$O column density (max. value: 70 pr-µm) - Ls =101-115°

H$_2$O column density is underestimated where small icy grains are present
H$_2$O maximum is lower than reported by MAWD and TES(2002)
Monitoring of CO over Hellas

• CO (2-0) band at 2.35\(\mu \)m is measurable only for low altitude regions (Hellas)
• CO mixing ratio is expected to be enhanced over Hellas during southern winter (Forget et al., 2006)
• CO monitoring with OMEGA does confirm this effect

• **Reference:** Encrenaz et al., submitted to Astron. Astrophys., 2006
Determination of the CO mixing ratio over Olympus

CO = 750 +/- 100 ppm
$L_s = 335.7^\circ$

$L_s = 48.5^\circ$

$L_s = 132.0^\circ$

$L_s = 295.9^\circ$
Variations of the CO mixing ratio over Hellas with Ls
TEXES: The 1237-1243 cm\(^{-1}\) spectrum of Mars (June 2003)
All lines identified down to depths of 0.3%
S/N > 1000 in the continuum

H\(_2\)O\(_2\), 10\(^{-7}\) synthetic

TEXES data
Ts on Mars - June 2003 (Ls = 206°)

TEXES

GCM
H_2O_2 and CO_2 lines at 1241.6 cm$^{-1}$
H$_2$O$_2$ mapping on Mars (Ls = 206°)
Encrenaz et al. Icarus 170,424, 2004

TEXES
\[Q(H_2O_2)_{\text{max}} = 4 \times 10^{-8} \]

GCM
\[Q(H_2O_2)_{\text{max}} = 4 \times 10^{-8} \]
H_2O_2 on TEXES data - Dec. 2005, Ls = 332°
Mean H_2O_2 Mixing Ratio = 15 +/- 5 ppb

$H_2O_2/CO_2 = 10, 15, 20$ ppb
$\text{H}_2\text{O}_2/\text{CO}_2$ Line Depth Ratio
Dec. 2005 - Ls = 332°

H_2O_2 is less abundant than expected from the GCM
Suggests possible heterogeneous chemistry (Lefèvre et al., 2006)
H₂O mapping from HDO line at 1240 cm⁻¹
H₂O mixing ratio = 300 +/- 100 ppm
June 2003, (Ls = 206°)

H₂O/CO₂ = 200, 300, 400 ppm
$Q(H_2O)_{max} = 3 \times 10^{-4}$
TEXES - 30 Nov. 2005 - Ls = 332°
HDO line, 1236.3 cm-1

H$_2$O = 150 ppm, 200 ppm, 250 ppm
TEXES - 30 Nov. 2005 - Ls = 332°
HDO/CO$_2$ line depth ratio