Laboratory studies of extraterrestrial matter: A view on the *solar* accretion disk

Matthieu Gounelle^{1,2}

¹Laboratoire d'Étude de la Matière Extraterrestre (LEME), Département Histoire de la Terre, Muséum National d'Histoire Naturelle, Paris, France

²Impacts & Astromaterials Research Center (IARC), Department of Mineralogy, Natural History Museum, London, UK

Structure of the talk

1. Introduction

- 2. Short-lived radionuclides
- 3. Stellar origin for iron-60
- 4. Early solar system irradiation

5. A Stardust détour

6. Conclusions

Laboratory studies of extraterrestrial matter: A view on the *solar* accretion disk 1. Introduction

Introduction

\Rightarrow What do we learn on the solar accretion disk from meteorites?

- \Rightarrow Astrophysical environment of the nascent Solar System
- Physical processes in the solar accretion disk (thermal and irradiation events, primordial matter processing...)
- ☆ Timescales of the different events (i.e. a chronology)
- How do informations retrieved from meteorites compare with astronomical observations of low mass protostars?

In other words, we try to tie laboratory analyses of extraterrestrial samples with astronomical observations

Components of chondrites

This approach relies on the assumption that the components of primitive meteorites (chondrites) formed in the solar accretion disk

☆ The common view is that CAIs are the first solids to have formed in the solar accretion disk (~ 2 Ma before chondrules) Laboratory studies of extraterrestrial matter: A view on the *solar* accretion disk 2. Short-lived radionuclides

Short-lived radionuclides in the solar accretion disk

- Short-lived radionuclides are radioactive elements with half-life < 5 Ma that were alive in the solar accretion disk
 - ☆ Detected in CAIs, chondrules and differentiated meteorites
 - Now extinct (detected through excesses of their daughter isotopes)
- Because short-lived radionuclides have short half-lives compared to molecular cloud cores evolution timescales, they have a <u>late minute origin</u>
 Made close to the disk or within the disk
- Understanding the <u>origin</u> (as well as <u>initial abundance</u> and <u>spatial</u> <u>distribution</u>) of extinct short-lived radionuclides is a key task for cosmochemists and astrophysicists
 - ☆ It constrains the **astrophysical environment** of the protosun
 - ☆ It constrains the *irradiation conditions* in the solar accretion disk
 - SRs offer the possibility to build a <u>chronology</u> for the radionuclides whose initial distribution is well known
 - \Rightarrow γ -ray emitters SRs (²⁶Al and ⁶⁰Fe) are a potential <u>heat source</u> for planetesimals

How does one detect a short-lived radionuclide?

Key radionuclides

Some key radionuclides have been recently (re)discovered

- Beryllium-7 decays to lithium-7 (T = 53 days) Chaussidon, McKeegan and Robert (2006)
- Beryllium-10 decays to boron-10 (T = 1.5 Ma) McKeegan, Chaussidon and Robert (2000)
- ☆ Chlorine-36 decays to argon-36 and sulfur-36 (T = 0.1 Ma) Lin et al. (2005)
- * Iron-60 decays to nickel-60 (T = 1.5 Ma) Tachibana et al. (2006)

☆ What was their initial value in the solar system?

The initial value of beryllium-7

- ☆ The past presence of beryllium-7 (T_{1/2}= 53 days) has been demonstrated in CAI Allende 3529-41
- $37 \text{ Pe}^{9}\text{Be} = (6.1 \pm 1.3) \times 10^{-3} \text{ in CAI Allende 3529-41}$
- ☆ So far demonstrated in *one* CAI only

The initial value of chlorine-36

0.1390

- Past presence of chlorine-36 ($T_{1/2} = 0.3$ Ma) was detected in sodalite from one Ningqiang CAI $\Rightarrow {}^{36}C|/{}^{35}C| = 5 \times 10^{-6}$
- Sodalite is a secondary phase made by hydrothermal alteration
 ²⁶Al/²⁷Al < 0.7 x 10⁻⁵ for the altered phase and ²⁶Al/²⁷Al = (5.1 ± 1.4) x 10⁻⁵ for the unaltered CAI
- \Rightarrow Combining ²⁶Al and ³⁶Cl data on the same CAI, one infers the initial value of ³⁶Cl/³⁵Cl
 - Using the exponential decay law
 - 36 Cl/35Cl > 1.6 x 10⁻⁴ in CAIs

0.130

0.125

2x10⁸

4x10²

27 Al/²⁴Ma

6x10²

8x101 1x101

15

27 Al/24 Mg

The initial value of iron-60

- The presence of 60 Fe (T_{1/2} = 1.5 Ma) has been demonstrated in several chondrules from unequilibrated ordinary chondrites
 - 60Fe/56Fe = (2.5 ± 0.8) × 10⁻⁷ Semarkona 1-4
 - ⁶⁰Fe/⁵⁶Fe = (1.9 ± 1.3) × 10⁻⁷ Semarkona 2-1
 - 60Fe/56Fe = (3.4 ± 2.1) × 10⁻⁷ Semarkona 2-4
 - ${}^{60}\text{Fe}/{}^{56}\text{Fe} = (5.1 \pm 2.5) \times 10^{-7}$ Bishunpur 21
- If CAIs formed 1-2 Ma after CAIs
 ⁶⁰Fe/⁵⁶Fe = 5-10 × 10⁻⁷ in CAIs

☆Note that the initial abundance of iron-60 in CAIs is *inferred* from the chondrule value and the putative time difference between CAIs and chondrules

Inventory of short-lived radionuclides

Radioisotope (R)	T (Ma)	Isotope fils	Isotope stable (S)	R/S	Detection		
⁷ Be	52 jours	⁷ Li	⁹ Be	6.1 × 10 ⁻³	CAIs		
⁴¹ Ca	0.1	⁴¹ K	⁴⁰ Ca	1.5 × 10 ⁻⁸	CAIs		
³⁶ Cl	0.3	³⁶ S	³⁵ Cl	> 1.6 × 10 ^{−4}	CAIs		
²⁶ AI	0.74	²⁶ Mg	²⁷ Al	4.5 × 10 ⁻⁵	CAIs, CHs, DIFF		
¹⁰ Be	1.5	¹⁰ B	⁹ Be	5-10 × 10 ⁻⁴	CAIs		
⁶⁰ Fe	1.5	⁶⁰ Ni	⁵⁶ Fe	5-10 × 10 ⁻⁷	CHs, DIFF		
⁵³ Mn	3.7	⁵³ Cr	⁵⁵ Mn	3-10 × 10 ⁻⁵	CAIs, CHs, DIFF		

CAI = CAI, CH = chondrule, DIFF = differentiated meteorite

<u>Note:</u> Other "short"-lived radionuclides with T> 5 Ma exist such as Hf-182 (T = 9 Ma) but they do not request a last minute origin, and therefore are not discussed here

The initial value of radionuclides in question

☆ Recent data question the fact that CAIs are the solar system oldest objects

- ☆ Some iron meteorites have ¹⁸²Hf-¹⁸²W ages older than those of CAIs (Kleine et al. GCA 2005)
- ☆ Some achondrites have Pb-Pb ages comparable to that of CAIs (4566.2 ± 0.2 Ma vs 4567.2 ± 0.6 Ma) (Baker et al. 2005)
- * Some chondrules have absolute ages comparable to that of CAIs

Krot et al. Nature 2005 ; Amelin et al. Science 2002

☆Keep that in mind when models are discussed

CAIS and	a chonan	ule abso	iute age	5
CV3 CAI				-
CV3 CAI				
CB2 abandrular				
CR2 chondrules	,0			
CV3 chondrules				
4.5.4				4500
4561 4563	4564	4566	4567	4569
Ab	solute Pb	-Pb age	(Ma)	
		•		

Ohio and shandwile sheetings and

The origin of short-lived radionuclides in Solar System 3. Stellar delivery of iron-60

Stellar production of radionuclides

- Iron-60 cannot be made by irradiation
 No neutron-rich target to make this neutron-rich isotope
- ☆ Iron-60 has a stellar origin
- ☆ Candidates are AGB stars or supernovae

\Rightarrow Questions

- ☆ Did the star that delivered ⁶⁰Fe, co-delivered other short-lived radioactivities?
- ☆ How far was the star?
- ☆ Physics of injection
- ☆ Stellar models for the origin of short-lived radionuclides are parametrized by the fraction (f) of the ejecta incorporated in the protosolar system and the delay (△) between the end of nucleosynthesis and the incorporation within the first solids. They also depend on stellar nucleosynthesis yields.

Delivery of radionuclides by a nearby star

AGB delivery of radionuclides

☆ <u>AGB stars</u> are a possible source for delivering short-lived radionuclides in the early Solar System (Wasserburg et al. 1994)

ſ	Table 2 Short-live processes	d nuclei f	rom a low	mass star wi	th cool bottom	
I	Rad.	Ref.	<u>45,w</u> 40	$(N_{\mathbf{R}}/N_{\mathbf{S}})_{w}$	$(N_{\mathbf{R}}/N_{\mathbf{S}})_{A_{1}}$	
I	²⁶ A1	²⁷ Al	1.02	2.0×10^{-2}	5.0×10^{-5}	
I	**Ca 60Fe	** <u>Ca</u> 56Fe	0.99	$\frac{4.5 \times 10^{-4}}{1.6 \times 10^{-5}}$	1.4×10^{-8} 5.7×10^{-8}	🚽 Dilution factor f
I	¹⁰⁷ Pd	¹⁰⁸ Pd	1.02	$9.9 imes 10^{-3}$	4.6× 10 ⁻⁵	
I	³⁶ Cl	³⁵ Cl	0.99	2.7×10^{-3}	2.4×10^{-6}	Decay interval Δ
	⁹⁹ Te	100Ru	1.01	1.1×10^{-3} 7.0×10^{-3}	4.0×10^{-6} 3.2×10^{-6}	
	¹³⁵ Cs 205 Db	¹³³ Cs 204 Pb	0.99	1.9×10^{-2} 1.0 × 10 1	9.1×10^{-5}	
	M=1.	$5 M_{\odot}, Z =$	= 1.07 $= 0.02(f_0 =$	1.0×10^{-3} , Δ_1	= 0.76 Myr.	Gallino et al., NAR, 2004

- \therefore <u>Choosing for and $\Delta 1$ makes it possible to reproduce ²⁰Al and ⁴¹Ca in the right amount</u>
- ☆ ⁵³Mn is not produced by AGB stars
 - ☆ Possible origin via continuous galactic nucleosynthesis
- 4 ⁶⁰Fe and ³⁶Cl underproduced by two orders of magnitude

A possible solution for ⁶⁰Fe is to increase metallicity (if $Z = Z_0/6$, ⁶⁰Fe/⁵⁶Fe ~ 3 x 10⁻⁷) $3^{36}Cl$?

The encounter probability between an AGB star and a molecular cloud core is very low (Kastner and Myers 1994)

Supernova delivery of radionuclides

* <u>Type II supernovae</u> are more likely candidates

☆ 25 M_o star

- ☆ Clemson/Beyruth stellar evolution code
- ☆ Injection in a 1 Mo presolar nebula

Meyer (2005) *In* Chondrites and the protoplanetary disk, PASP, Krot, Scott, Reipurt Eds

* The meteoritical value is underestimated by ~40

☆ For injection mass cut < 5.5 Mo</p>

- 26 Al, 60 Fe, 41 Ca delivered at the solar system abundance
- 36 Cl underproduced by a factor of at least 20

☆ For injection mass cut > 6 Mo

☆ No delivery!

Supernova delivery of radionuclides

- Nucleosynthesis yields from <u>Rauscher et al. ApJ 2002</u>
- starting f varies between 0.8 x 10⁻⁵ to 5.5 x 10^{-5.} Δ varies between 0.57 and 1.37 Ma
- ☆ ²⁶Al, ³⁶Cl underproduced, ⁵³Mn overproduced
- ☆ If a supernova delivered ⁶⁰Fe (and ⁴¹Ca), unlikely it delivered ²⁶Al and ³⁶Cl

Supernova delivery of radionuclides

An Orion-like environment for the formation of low-mass stars ?

- Most (?) low-mass stars form in the vicinity of massive stars (Orion vs Taurus)
- Not clear yet if our solar system did
 - Not have enough short-lived radionuclides that have a certain stellar origin
 - Difficult to estimate the distance of the supernova
 - Difficult to estimate the size of the molecular cloud core

Hester & Desch (2005) *In* Chondrites and the protoplanetary disk, PASP, Krot, Scott, Reipurt Eds

Laboratory studies of extraterrestrial matter: A view on the solar accretion disk 4. Early solar system irradiation

Irradiation production of radionuclides

- ☆ Because of its short half-life (<u>53 days</u>), beryllium-7 has an irradiation origin
- Servilium-10 also likely formed by irradiation (McKeegan et al. 2001; Gounelle et al. 2001 2006)

$rac{d}{d}$ Questions

- Irradiation physics (nature, energy distribution, abundance... of accelerated particles)
- * Location of irradiation
- ☆ Can irradiation coproduce other short-lived radionuclides?

☆ Irradiation models depend on the chemistry of target, the irradiation time, the nature of the cosmic-rays, nuclear cross sections...

Irradiation in the context of the x-wind

- ☆ Irradiation <u>close</u> to the Sun (~0.06 AU) of a <u>solid</u> target
 - \Rightarrow Where baryons are accelerated and confined (reconnection ring)
- Transport of irradiated protoCAIs to asteroidal distances by the x-wind
- ☆ To produce beryllium-7 and beryllium-10
 - ☆ Short irradiation times needed (1-10 yr)
 - ☆ Elevated energetic particles fluxes ($F_p \sim 2 \times 10^{10} \text{ cm}^{-2}.\text{s}^{-1}$)

Other short-lived radionuclides co-produced if impulsive events (flares) are considered (steep energy spectra and elevated abundances of helium-3)

Lee et al., ApJ 1998 ; Shu et al., ApJ 2001 ; Gounelle et al., ApJ 2001; Gounelle et al. ApJ 2006

X-ray observations of protostars

☆ <u>COUP</u>

- ☆ Chandra Orion Ultradeep Project (<u>PI: E. Feigelson</u>)
- * X-ray [0.5-8 keV] observation of the Orion Nebular Cluster (ONC)
- ☆ Detection of 1400 young stars during 13.2 days
- ☆ Specific study of 28 solar masses stars (0.9 Mo < M < 1.2 Mo)
- \Rightarrow The unprecedented long observation time is ideal to study flaring

COUP	COUP J	JW ^a	offse	*('')	v	I	J	н	K,	L	Spec.Type	Av
			Optical	2MASS					-			
17	053443.0-052007	63	1.37	1.13	14.81	12.75	11.17	10.37	10.09	_	K6	1.5
54	053450.4-052020	113	0.03	0.43	16.43	14.20	11.96	11.03	10.44	_	K6	2.0
57	053450.7-052401	116	0.09	0.34	13.56	12.12	11.01	10.53	10.28	_	K5	0.3
131	053458.8-052117	187	0.29	0.19	17.12	14.27	11.98	10.95	10.24	_	K5	3.9
147	053500.4-052514	198	0.15	0.21	15.43	13.80	12.19	11.19	10.40	_	K6	0.4
177	053502.4-052046	223a	0.08	0.19	16.06	13.64	11.54	10.52	10.10	_	K5	2.8
223	053504.7-051742	253	0.32	0.23	17.35	14.22	11.53	10.10	9.34	_	K5	4.6
241	053505.4-052717	268	0.14	0.12	14.49	12.88	11.8	11.08	10.84	_	K5-K6	0.4
250	053505.7-052418	278	0.22	0.22	15.6	13.66	11.62	10.30	9.33	8.19	K2-K7	1.6
262	053506.2-052202	286	0.12	0.18	17.69	14.91	11.66	10.07	9.30	8.59	K5	3.7
314	053508.4-052829	320	0.18	0.24	17.1	14.73	13.27	11.78	10.82	_	K2	3.5
515	053513.0-052030	394	0.20	0.23	18.82	14.98	12.29	10.96	10.43	10.09	K6	6.1
567	053513.6-053057	421	0.07	0.26	12.94	11.48	10.18	9.26	8.62	_	K5 ^b	0.3
753	053515.9-051459	487	0.16	0.21	14.57	12.79	11.63	10.77	10.32	_	K6	0.8
828	053516.7-052404	526b	0.35	0.16	13.77	11.87	10.01	9.18	8.89	8.84	K2-K6	1.1
1023	053519.2-052250	9250	0.64	0.19	17.03	14.23	11.98	10.86	10.36	9.88	K5	3.8
1127	053521.0-051637	664	0.14	0.23	16.93	14.05	12.08	11.03	10.64	_	K5.5-7	3.6
1134	053521.0-053121	673	0.17	0.30	14.9	13.07	11.57	10.62	10.03	_	K5	1.3
1151	053521.3-052644	683	0.10	0.21	13.61	11.76	10.48	9.64	9.40	_	K6	1.0
1167	053521.7-052339	694	0.29	0.23	17.73	14.74	12.54	11.42	10.80	9.83	K5-K7	3.9
1235	053522.9-052241	726	0.23	0.20	19.24	15.35	12.5	11.03	10.33	9.95	K5-K7	6.2
1259	053523.6-052331	738	0.15	0.18	15.7	13.84	11.97	10.92	10.45	10.09	K5	1.4
1281	053524.2-052518	750	0.28	0.03	14.85	12.87	11.53	10.54	9.94	9.25	K0-K5	1.7
1326	053525.4-052134	777	0.64	0.02	18.46	15.15	12.72	11.40	10.58	_	K6	4.7
1327	053525.4-052135	777	0.59	0.02	18.46	15.15	12	10.90	10.53	9.86	K6	4.7
1500	053532.9-051605	892	0.18	0.30	16.21	13.99	11.62	10.49	10.06	_	lateK	2.0
1539	053537.5-052716	930	0.03	0.06	16.64	14.08	12.71	11.94	11.71	_	K5-K7	2.8
1570	053542.4-052733	962	0.08	0.05	15.23	13.26	11.39	10.57	10.12	_	K6	1.3

^a Jones, B. F. & Walker, M. F. 1988, AJ, 95, 1755

^bHillenbrand (1997) list this as a K5 (as measured by Hillenbrand) with a previous spectral type of F8-G0III-IV with an unknown reference

Wolk et al., ApJS, 2005

X-ray observations of protostars

☆ <u>COUP Results: General</u>

- The solar mass stars have a non constant X-ray activity at a confidence of 99 %
- \rarrow Blocks of observations are classified as
 - ☆ Characteristic [green]
 - ☆ Elevated [cyan] and very elevated [red]
 - * Flares [fast rise and exponential decay, blue]

Wolk et al., ApJS, 2005

☆ COUP Results: characteristic activity

- ☆ Sources spend 75 % of their time at the characteristic level
- The characteristic activity of all low-mass young stars is extremly high $\Rightarrow < L_x > = 1.8 \times 10^{30} \text{ erg.s}^{-1} (\text{SUN: } < L_x > = 2 \times 10^{25} \text{ erg.s}^{-1})$
- ☆ There is no apparent correlation with age
- \Rightarrow The characteristic level could be the result of micro/nanoflaring

X-ray observations of protostars

☆ <u>COUP Results: Flaring</u>

☆ 41 flares were detected at 95 % confidence

☆ Flare duration is vast: 1 hour to three days

 $rac{1}{2} < L_X > = 6.5 \times 10^{30} \text{ erg.s}^{-1}$

- \Rightarrow 90 % of flares rise to less than 10 times the characteristic level
- \Rightarrow COUP 1259 has L_X = 4.0 x 10³² erg.s⁻¹ [most powerful flare]
- ☆ One flare every 4 days
- * No dependence of flares on the presence of dusty disks or accretion

X-ray interactions with protoplanetary disks

- ☆ Ionization, shock-wave generation etc (Glassgold et al. 2005)
- * Particle acceleration is associated with X-ray emission
 - \Rightarrow Directly observed for the SUN [L_p (E>10 MeV) ~ 0.09 L_X]
 - Detection of radiosynchrotron radiation from MeV electrons accelerated by magnetic flares in YSOs
- * <u>Comparison with the x-wind irradiation model</u>
 - The average characteristic value is within a factor of 3 of that adopted by Lee etal. (1998) and Gounelle et al. (2001) using very preliminary data (ROSAT & ASCA)
 - ☆ Fluence calculated by Wolk et al. (2005) similar to that estimated by Lee et al. (1998)
 - The <u>impulsive phase</u> is often present (Wolk et al. 2005)
 Difficult to quantify at present
 - Stars considered by COUP are 2 Ma old stars (revealed TTauri/class 3)
 Stars considered in the context of the x-wind model are protostars (class 0) and embedded TTauris (class 1)

Laboratory studies of extraterrestrial matter: A view on the *solar* accretion disk 5. A Stardust *détour*

NASA Stardust Mission

- Encounter with comet Wild 2: January 2nd 2004
- 🖈 Jupiter Family Comet
- ☆ Capture of cometary dust in aerogel
- Back to Earth (Utah desert):
 2006 January 15th

☆Samples from *one* comet!

 \Rightarrow As asteroids differ one from the other, so probably do comets

NASA Stardust Mission

 \Rightarrow Since CAIs likely formed close to the Sun, this finding demonstrates extensive mixing in the protoplanetary disk

☆Via the x-wind

☆Via turbulence

Picture released by M. Zolensky, Stardust Mineralogy subteam leader, LPSC 2006 Laboratory studies of extraterrestrial matter: A view on the *solar* accretion disk 6. Conclusions

Conclusions

- Meteorites' components record processes in the protoplanetary disk
- ☆ Short-lived radionuclides are a key tool for
 - ☆ Constraining the astrophysical environment of our solar system birth
 - ☆ Constraining the irradiation conditions of the protoplanetary disk
 - Building a chronology of the disk history
- Note that the initial value of short-lived radionuclides is not that well known
- A Recent measurements of short-lived radionuclides have revealed that
 - ☆ The sun formed "close" to a supernova
 - Tf iron-60 delivered by a supernova, unlikely other radionuclides were (my view)
 - ☆ Irradiation took place at high fluxes
- ☆ If aluminium-26 has an irradiation origin, a chronology based on an heterogeneous distribution of ²⁶Al is needed (Gounelle & Russell 2005a,b)
- Stardust samples reveal intense processing of interstellar matter and active mixing between the inner and the outer solar system
- ☆ Comparison with astronomical observations and astrophysical model is key in interpreting meteorites'data