Late stages in the evolution of the Solar System

A. Morbidelli (OCA, Nice, France)

OUTLINE

Late = after the gas disappeared

Terrestrial planet formation

Giant planets migration due to a planetesimal disk
Late instabilities: the Late Heavy Bombardment

I) Terrestrial planet formation

Classical' model of terrestrail planet accretion: from embryos in the 0.5-2.0 AU zone.

Looking for solutions for the e/i/timescale problem: Pushing dynamical friction

New simulations: O'Brien, Morbidelli, Levison, 2006 4 simul. with circular Jup. & Sat. and 4 with giant planets on current orbits **O'Brien et al. (2006)**

Time = 0.00E+00 Myr

a

ObML06

Quantifying orbital excitation

$$\mathbf{AMD} = \frac{\sum_{j} m_j \sqrt{a_j (1 - e_j^2)} \cos i_j - \sum_{j} m_j \sqrt{a_j}}{\sum_{j} m_j \sqrt{a_j}}$$

ObML06

Angular Momentum Deficits

Timescales....

ObML06 for simulations with Circ. Jup. & Sat. Median $T_{90\%}$ and time of last impact decrease to 40 My and 31 My in simulations with eccentric Jup. & Sat.

(T_{90%} of Chambers 2001 was 125 My)

Origin of material incorporated into the planets

ObML06

Circular JS case

15% of planetary mass accreted from beyond 2.5 AU, 75% of which from embryos

Eccentric JS case

No material accreted from > 2.5 AU

Why these differences between the circular and the eccentric cases?

The answer is in resonance strength

So, was Jupiter circular or eccentric? ...difficult to say...

II) Giant planet migration due to a planetesimal disk

Migration direction: Our Solar System case. Fernandez and Ip (1980); Malhotra (1993, 1995)

Evidence for planet migration: The Kuiper belt

a (UA)

Why did Neptune stop at 30 AU?

Hahn and Malhotra (1999) solution

A massive Kuiper belt (~15M_E) would remain beyond ~35AU!

The current mass is < 0.1 M_E

Dynamical mass depletion of the Kuiper belt Gomes, Morbidelli, Levison (2004)

Simulation as in Hahn and Malhotra (1999) but with a half massive disk and one Earth mass embryo

GENERAL IMPLICATION

It is not possible to deplete the belt by ejecting most of its objects to Neptune-crossing orbit* otherwise Neptune would have migrated well beyond 30 AU !

*unless the belt was $<5 M_E$ from the beginning – not enough to grow the KBOs

The collisional grinding of the Kuiper belt does not seem to work either (Gomes et al., 2004; Kenyon and Bromley, 2004)

Thus, Gomes (2003) - Levison & Morbidelli (2003) proposed that the disk was truncated at ~ 30 - 35 AU. The KBOs had to form within this limit and be transported outward, during Neptune's migration.

III) Late instabilities : the Late Heavy Bombardment

In all previous simulations, migration started immediately because planetesimals were placed in very unstable regions.

However, at the end of the gas-disk phase, planetesimals should be only where the lifetime is longer than the nebula dissipation time

Gomes, Levison, Tsiganis, Morbidelli, (2005)

Gomes, Levison, Tsiganis, Morbidelli, (2005)

We argue that this is the solution of the problem of the Origin of the Late Heavy Bombardment

A few facts on the LHB:

•Cataclysmic event triggered 3,9 Gy ago, ~600My after terrestrial planet formation

Global event: traces found on Mercury, Venus, Earth, Mars, Vesta..., possibly on giant planets satellites
20.000x tree current bombardment rate: 1 km object impacting the Earth every 20 years!

•Duration: 51 50 My

Two strengths of our LHB model.

I: We explain a late heavy bombardment, with magnitude and duration consistent with crater constraints

R. Gomes et al. 2005. Nature, 435,466

Asteroids dominated the LHB signature: Kring and Cohen 2002, Strom et al. 2005:

II: We explain the current orbits of the giant planets: their semi major axes, eccentricities and inclinations

K. Tsiganis, R. Gomes, A. Morbidelli, H.F. Levison 2005. *Nature, 435, 459*

We also explain the distribution of Jupiter Trojans (see Morbidelli, Levison, Tsiganis, Gomes 2005)

Conclusions

When the gas disk is dissipated, the Solar System is not done yet

•Terrestrial planet formation continues for about ~40 My

•Giant planets migrated, driven by planetesimals continues for ~600 My

•The Late Heavy Bombardment marks a big reorganization of the Solar System's structure, which led to the System that we know today.

LATE PLANET INSTABILITIES

might be quite generic, explaining the IR excess observed for main sequence stars

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.