## Astrobiology of Titan

## François Raulin

Université Paris 12 & Paris 7 / CNRS, France

XVIIIèmes Rencontres de Blois – June 1, 2006



## 1. Titan ⇔ Earth

A dense atmosphere mainly made of  $N_2$ , with a vertical structure analog to that of the Earth

×

#### thermosphere

#### mesosphere

#### stratosphere

#### troposphere



HASI temperature profile

# Altitude [km]

Credit: ESA / ASI / UPD / OU / FMI



Presence of <sup>40</sup>Ar (Cassini-INMS & Huygens-GC-MS) ~4,3x10<sup>-5</sup> (GC-MS)

 $\Rightarrow$  secondary atmosphere by degassing (<sup>40</sup>K => <sup>40</sup>Ar)

#### Very small amount of primordial gases ${}^{36}$ Ar : 2.8 x 10<sup>-7</sup> (GC-MS) other noble gases : Kr and Xe : below 10<sup>-8</sup> (GC-MS) $\Rightarrow$ Atmosphere initially made of NH<sub>3</sub>

#### $^{14}N/^{15}N$ from GC-MS = 183 : < than primordial N

- $\Rightarrow$  loss of several times the present atmosphere
- $\Rightarrow$  large organic deposit on the surface

#### **Other similarities**

#### volcanic, sedimentological & meteorological origins of several surface features (Huygens DISR; Cassini ISS Radar, VIMS)

## => A geologically active planet !!



#### *Science* 13 May 2005: Vol. 308. no. 5724, pp. 1014 - 1017

#### A Hydrogen-Rich Early Earth Atmosphere

## Feng Tian,<sup>1,2\*</sup> Owen B. Toon,<sup>2,3</sup> Alexander A. Pavlov,<sup>2</sup> H. De Sterck<sup>4</sup>

We show that the escape of hydrogen from early Earth's atmosphere likely occurred at rates slower by two orders of magnitude than previously thought. The balance between slow hydrogen escape and volcanic outgassing could have maintained *a hydrogen mixing ratio of more than 30%.* The production of prebiotic organic compounds in such an atmosphere would have been more efficient than either exogenous delivery or synthesis in hydrothermal systems.

=> Atmospheric organic syntheses may have played an important role in prebiotic chemistry on the early Earth

## 2. Titan's Organic Chemistry

|                           | ORGANIC PRODUCTS                                                                                                                                                                 |                                                                                                                                                                                          |  |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Gas Mixture               | Electrical Discharge                                                                                                                                                             | es UV light                                                                                                                                                                              |  |
| CH4 + NH3<br>+ H2O (+ H2) | <ul> <li>RH (sat &amp; unsat)</li> <li>HCN &amp; other RCN (sat)</li> <li>RCO2H</li> <li>H2CO, other aldehydes</li> <li>Ketones &amp; alcohols)</li> </ul>                       | <ul> <li>RH (mainly sat)</li> <li>HCN &amp; other N-organics<br/>RCN (sat) if N/C &lt;1<br/>RNH2 if N/C &gt;1</li> <li>H2CO, other aldehydes</li> <li>Ketones &amp; alcohols)</li> </ul> |  |
|                           | <u>Solids</u> ==> Amino-<br>acids, N- heterocycles                                                                                                                               | <u>Solids</u> ==> Amino-acids                                                                                                                                                            |  |
| CH4 + N2<br>+ H2O         | <ul> <li>RH (sat &amp; unsat)</li> <li>HCN, other RCN (sat &amp; unsat) : HC3N &amp; C2N2</li> <li>O-organics including H2CO, other aldehydes, ketones &amp; alcohols</li> </ul> | <ul> <li>RH (sat &amp; unsat)</li> <li>O-organics including<br/>H2CO &amp; other<br/>aldehydes at very low<br/>yield</li> </ul>                                                          |  |
|                           | <u>Solids</u> ==> Amino-acids,<br>N- heterocycles                                                                                                                                | <u>Solids</u> ==> Carboxilic<br>acids                                                                                                                                                    |  |

## SOLID PHASE : THOLINS



- Tholins (Carl Sagan, *Nature*, 1979) names the solid organic product obtained after irradiation of gas mixtures of cosmically abundant molecules by energy sources of astrophysical importance
- Titan's tholins obtained after irradiation of N2-CH4 gas mixtures = laboratory analogues of Titan's aerosols

| Compounds             | Stratosphere Mixin<br>(E=Equ.; N=North I | • | Production in<br>Simulation Experiments |
|-----------------------|------------------------------------------|---|-----------------------------------------|
| Main constituents     |                                          |   |                                         |
| Nitrogen N2           | 0.98 – 0.95                              |   |                                         |
| Methane CH4           | 0.02 - 0.05                              |   |                                         |
| <b>Hydrocarbons</b>   |                                          |   |                                         |
| Ethane C2H6           | 1.3 x 10-5                               | Е | Maj.                                    |
| Acetylene C2H2        | 2.2 x 10-6                               | Е | Мај.                                    |
| Propane C3H8          | 7.0 x 10-7                               | Е | ++                                      |
| Ethylene C2H4         | 9.0 x 10-8                               | Е | ++                                      |
| Propyne C3H4          | 1.7 x 10-8                               | Ν | +                                       |
| Diacetylene C4H2      | 2.2 x 10-8                               | Ν | +                                       |
| Benzene C6H6          | few 10-9                                 |   | +                                       |
| N-Organics            |                                          |   |                                         |
| Hydrogen cyanide HCN  | 6.0 x 10-7                               | Ν | Maj.                                    |
| Cyanoacetylene HC3N   | 7.0 x 10-8                               | Ν | ++                                      |
| Cyanogen C2N2         | 4.5 x 10-9                               | Ν | +                                       |
| Acetonitrile CH3CN    | few 10-9                                 |   | ++                                      |
| Dicyanoacetylene C4N2 | Solid Phase                              | Ν | +                                       |
| O-Compounds           |                                          |   |                                         |
| Carbon monoxide CO    | 2.0 x 10-5                               |   |                                         |
| Carbon dioxide CO2    | 1.4 x 10-8                               | E |                                         |
| Water H2O             | few 10-9                                 |   |                                         |



C



#### **CIRS** data

Flasar et al, *Science* **308**,975 (2005)

#### **Huygens GC-MS data**





# Huygens-ACP/GC-MS first data : chemical composition of the aerosols

- Aerosols are composed of :
  - an organic refractory part,
  - made of carbon, hydrogen and nitrogen atoms.

• Their pyrolysis at 600°C produces HCN and NH<sub>3</sub>: fingerprints of the chemical structure of the aerosol organic solid core. Core molecular structure may include: -CN, -NH<sub>2</sub>, -NH- and -N< and /or -C=N-



- => important photochemical sink for atmospheric N and C
- => end-product of a complex organic chemistry
- => supports the tholins model

## **SOLID PHASE : THOLINS**

- Optical properties: refractive indices
- C/H (0.6 1.1) & C/N (~0.7 ~3)
- IR and UV spectra + pyrolysis-GC-MS aliphatic & benzenic groups CN & NC groups NH<sub>2</sub> & C=NH groups
- Morphology

Low T tholins, Coll et al., ASR, 2001



- Organic macromolecular material of largely irregular structure
- Gel filtration chromatography of the water soluble fraction :
  - => molecular mass of ~ 500 to 1000 Daltons
- Direct analysis by chemical derivatization techniques before and after hydrolysis:
  - => amino-acid or their precursors
- And even :
  - => nutritious properties (for terrestrial bacteria ...)
- No noticeable isotopic C fractionation from starting methane

 Complex organic chemistry in the atmosphere – and mainly in the aerosols

• Presence of organics playing a key role in terrestrial prebiotic chemistry (HCN, HC3N, .... and their oligomers)



#### 3. Life on Titan ?



Possible presence of a H<sub>2</sub>O-NH<sub>3</sub> internal ocean chondritic matter => prebiotic compounds

An efficient prebiotic reactor:

 Low temperature reduces the rate constants of chemical reactions, but may increase the concentration of species by eutectic effect => increases the rate of the reaction

 High pressure conditions may induce chemical condensation reactions

Hydrothermal vents, if present, can increase chemical complexity

#### Life in Titan's ocean ?

Fortes (Icarus, 2000) no insurmountable obstacle in this environment:

> possible temperature: ~ 260 + possible occurrence of cryovolvanic hotspots at ~ 300 K

pressure: ~ 5 kbar at depth of 200 km => not incompatible with life

PH: 15 % wt NH<sub>3</sub> => pH ~11.5 Some bacteria can grow on Earth at pH 12

energy: \*with radiogenic heat flow ~ 5x10<sup>11</sup> W
\* biomass density could be 1g /m2 (not so low....)

What kind of life? Prokaryotic and anaerobic? Terrestrial archaebacteria good examples of what can be expected

Methanogenic archaebacteria:

heterotrophic: organics + H<sub>2</sub> → CH<sub>4</sub> + organic products
autotrophic: CO<sub>2</sub> + H<sub>2</sub> or Fe° => CH<sub>4</sub> + organic products
\* organic products = methanol, methylamine, formate,..
\* with a <sup>12</sup>C enrichment : => <sup>12</sup>C/<sup>13</sup>C ~ 91 - 94
(reference ~89)

In Titan low atmosphere:

- \* GCMS data =>  ${}^{12}C/{}^{13}C = 82$
- \* suggests a non biological origin for CH<sub>4</sub>

#### (PRELIMINARY) CONCLUSION & PROSPECTIVE

**Origin and cycle of CH**<sub>4</sub> : a key question

- Illustrates the whole complexity of the Titan's system
- CH<sub>4</sub> sources ? Clathrates ? Serpentinisation ? ...
   => Mars and ... Earth inputs ....
- CH<sub>4</sub> reservoir replenishing the atmosphere since the beginning ? Episodically ?
   => a sub surface CH<sub>4</sub> reservoir ?
- The main product of  $CH_4$  photolysis is  $C_2H_6$ : should form (surface ?) liquid reservoirs, not yet detected
- Complexity of the organic chemistry ?

LISA - P. Coll, E. Hebrard, M.-J. Nguyen, R. Sternberg Service Aéronomie - M. Cabane, G. Israel, C. Szopa LPG - J.-M. Bernard, E. Quirico, B. Schmitt NASA-GSFC - H. Niemann

> With my astrobiolocal thanks For your attention

This document was created with Win2PDF available at <a href="http://www.win2pdf.com">http://www.win2pdf.com</a>. The unregistered version of Win2PDF is for evaluation or non-commercial use only.