Laboratory studies of organic material under simulated martian conditions

I. L. ten Kate¹ J.R.C. Garry¹, Z. Peeters¹, Z. Martins¹, R. Ruiterkamp¹, B.H. Foing², P. Ehrenfreund¹

¹ Astrobiology Group, Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, 2300 RA Leiden, NL ² ESA Research and Scientific Support Department, Keplerlaan 1, P.O. Box 299, 2200 AG Noordwijk, NL

Viking – search for life

experiments biology molecular analysis NO organic material detected

Potential sources of organics on Mars

Extramartian delivery

delivery rate: 2.4×10^{6} kg yr⁻¹ Flynn (1996)

Abiotic synthesis

(Remnants of) life

Explanation for the absence of organics on Mars

Yen *et al.* (2000), Quinn (2005): destruction of organic compounds by oxidation processes occurring in the soil

Benner *et al.* (2000): complex organic acids can be present, Viking GCMS was not suited to detect these compounds

Glavin *et al.* (2002): detection limit of the Viking GCMS was too high to detect pyrolysis products of bacteria

Mars simulations

Research Goal

to characterise the response of biomolecules to simulated Mars' surface conditions

amino acids

pure embedded in soil analogues

Parameters of interest

Mars Before Closest Approach • 2003 HST • WFPC2 Mars Before Closest Approach • 2003 HST • WFPC2	UV flux (190-325 nm) (Patel <i>et al.</i> 2002)	<i>Flux:</i> ~1.4 × 10 ¹⁵ photons s ⁻¹ cm ⁻² <i>Intensity:</i> ~37 W m ⁻²
	Atmospheric composition	95.3% CO ₂ & 2.7% N ₂ ; 1.6% Ar; 0.13% O ₂ ; 0.03% H ₂ O
	Surface temperature	140 to 300 K average: 210 K

different conditions investigated separately and combined

Used amino acids

Glycine

H₂NCH₂COOH

Alanine

H₂NCH(CH₃)COOH

well characterised detected in meteorites present in all organisms

Stability of amino acids on the martian surface

irradiation of thin layers of glycine and alanine, with Mars-like UV flux levels

focus on **pure** amino acids

a) In vacuum (~10⁻⁶ mbar) at 294 K
b) In CO₂ (~7 mbar) at 294 K
c) In vacuum (~10⁻⁷ mbar) at 210 K
d) In CO₂ (~7 mbar) at 210 K

Amino acid thin layers

sublimation at ~10⁻⁵ mbar ~ 400 K

silicon substrate → IR transparent

layer thickness: in situ laser interferometry

ten Kate et al. 2005

Amino acid thin layers

Experimental setup

light source: deuterium discharge lamp

190-325 nm

Lamp: ~ 1.2×10^{14} photons cm⁻² s⁻¹ Mars: ~ 1.4×10^{15} photons cm⁻² s⁻¹

IR spectroscopy

ten Kate et al. 2006a

Results I - IR spectra

I – infrared absorption spectrum

II – amount of material lost after 50 hrs of UV irradiation

→ uniform degradation

ten Kate et al. 2005

Results II – glycine destruction rates

- A) in vacuum
- B) in a 7 mbar CO_2 atmosphere at 294 K
- C) in vacuum when cooled to 210 K

	destruction rate (s ⁻¹)	Mars half-life (s)
А	$4.5 \pm 2.3 \times 10^{-7}$	$1.3\pm0.8\times10^5$
В	$4.9 \pm 2.3 \times 10^{7}$	$1.3 \pm 0.6 \times 10^5$
С	$0.8 \pm 2.9 \times 10^{-7}$	$0.9\pm7.5\times10^{6}$

D) 7 mbar CO₂ atmosphere at 210 K (not shown)

ten Kate et al. 2006a

Results III – cold vs warm

at room temperature (RT)

reaction products in gas phase reaction products diffuse out of glycine bulk no means to measure reaction products

at 210 K destruction at same rate as at RT slower kinetics → less diffusion → recombination ? no reaction products measured

Stability of amino acids within the martian soil

UV irradiation of amino acids embedded in martian soil analogues, under simulated martian conditions

Analogues:

JSC / Mars-1, sample from Hawaiian volcano (Mauna Kea)
 Salten Skov, sample from Jutland, Denmark

Soil analogues

1) JSC / Mars-1

coarse grains, crushed elemental composition broadly similar to martian soil

2) Salten Skov

fine grains, homogeneous size distribution rich in iron precipitates

no cleaning or sterilisation

Experimental setup

irradiation source deuterium discharge 190 - 325 nm

Conditions:

- a) 24 hr UV irradiation at 294 K and $\sim 1 \times 10^{-5}$ mbar
- b) 7 days UV irradiation at 294 K and $\sim 1 \times 10^{-5}$ mbar
- c) 7 days UV irradiation at 210 K and 7 mbar CO₂ atmosphere

Garry et al. 2006

Results I - amino acid content

Intrinsic amino acid content of the soil analogues

aspartic acid; glutamic acid; glycine; alanine; valine, leucine

Garry et al. 2006

Results II - effect on amino acid concentrations

Results II - effect on amino acid concentrations

Irradiation with UV in vacuum at 294 K:

MORE amino acids than in unirradiated sample

photolysis of intrinsic bacteria in the soil samples

Results II - effect on amino acid concentrations

Irradiation with UV in vacuum at 294 K:

MORE amino acids than in unirradiated sample

photolysis of intrinsic bacteria in the soil samples

After irradiation with UV in CO₂ atmosphere at 210 K:

LESS amino acids than in unirradiated sample

H₂O adsorbed on soil grains at 210 K, produced radicals lead to destruction

Garry et al. 2006

Overall conclusion

amino acids not stable on martian surface: half life of 24 hrs stable in soil: 10⁷ years (soil chemistry not taken into account)

future missions should be looking for small organic compounds exclusively beneath the surface

Acknowledgments

This research has been performed in the frame of the Recognised Cooperating Laboratories in support of Mars Express and future European missions to Mars.

> The authors would like to thank the BioScience Initiative of Leiden University, SRON (Space Research Organisation of the Netherlands), NWO (Netherlands Organisation for Scientific Research), Fundação para a Ciência e a Tecnologia, and ESTEC (ESA) for their financial support.