



### on the usefulness of asking questions.... ....before obtaining answers!

21st May 2008

XXth Rencontres des Blois

### Ultra High Energy Cosmic Rays from Radio Galaxies - revisited -

#### Jörg P. Rachen Max-Planck-Institute for Astrophysics Garching, Germany

21st May 2008

XXth Rencontres des Blois

### Why consider radio galaxies?

### And why revisit them now?

21st May 2008

XXth Rencontres des Blois



Jörg P. Rachen

21st May 2008









Astron. Astrophys. 272, 161-175 (1993)

#### Extragalactic ultra-high energy cosmic rays

I. Contribution from hot spots in FR-II radio galaxies

#### Jörg P. Rachen and Peter L. Biermann

Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, W-5300 Bonn 1, Germany

Received October 9, accepted December 22, 1992

**XXth Rencontres des Blois** 

### What the hell means FR-II?

or

# Can all radio galaxies accelerate UHECR?

21st May 2008

XXth Rencontres des Blois

#### Fanaroff-Riley Class II (e.g. Cygnus A)



21st May 2008

XXth Rencontres des Blois











## Can heavy (or light) nuclei help?

XXth Rencontres des Blois





21st May 2008

XXth Rencontres des Blois



$$J_{\rm src}(r,Z) \propto r^{-s} \exp\left(-\frac{r}{r_{\rm c}}\right) \exp\left(-\frac{Z}{Z_{\rm c}}\right)$$
$$J_{\rm obs}(r,Z) \sim r^{-s} M(r,z) Z^{-1} \mathcal{C}\left(-\frac{rZ}{r_{\rm c}Z_{\rm c}}\right)$$



21st May 2008

XXth Rencontres des Blois



$$J_{\rm src}(r,Z) \propto r^{-s} \exp\left(-\frac{r}{r_{\rm c}}\right) \exp\left(-\frac{Z}{Z_{\rm c}}\right)$$
$$J_{\rm obs}(r,Z) \sim r^{-s} M(r,z) Z^{-1} \mathcal{C}\left(-\frac{rZ}{r_{\rm c}Z_{\rm c}}\right)$$



21st May 2008

XXth Rencontres des Blois

### Summary on radio lobes

- Hot spots in FR-II radio galaxies can produce UHECR at >40 EeV, but
  - sources are too rare (nearest FR-II at 100 Mpc)
  - incompatible wit Auger event distribution
- Lobes in FR-I radio galaxies (like Centaurus A) can produce UHECR only up to a few EeV
  - not enough to explain Auger events
  - the giant lobes do not contribute as accelerators, as there are no or only weak shocks (Kronberg et al. 2004)
- Inclusion of nuclei (He-Fe) with a realistic abundance distribution effectively shift the maximum energies only by a factor of ~3
  - not enough to save the case for FR-I lobes

### Summary on radio lobes

- Hot spots in FR-II radio galaxies can produce UHECR at >40 EeV, but
  - sources are too rare (nearest FR-II at 100 Mpc)
  - incompatible wit Auger event distribution
- Lobes in FR-I radio galaxies (like Centaurus A) can produce UHECR only up to a few EeV
  - not enough to explain Auger events
  - the giant lobes do not contribute as accelerators, as there are no or only weak shocks (Kronberg et al. 2004)
- Inclusion of nuclei (He-Fe) with a realistic abundance distribution effectively shift the maximum energies only by a factor of ~3
  - not enough to save the case for FR-I lobes



### What about the compact jet?

or

### What is the relation to blazars?

21st May 2008

XXth Rencontres des Blois



(1991)

3C279

25

20 log [v/Hz]

#### The "blazar" zone of Cen A



Astron. Astrophys. 269, 67-76 (1993)

#### The proton blazar

#### K. Mannheim

Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, W-5300 Bonn 1, Germany

og [vF,/(Hz Jy)]

(1983-198

Received July 8, accepted September 8, 1992

(1991)

3C279

25

20 log [v/Hz]

# The "blazar" zone of Cen A



Astron. Astrophys. 269, 67-76 (1993)

#### The proton blazar

#### K. Mannheim

Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, W-5300 Bonn 1, Germany

[(\fr 7H)/"34] 6<

(1983-198

Received July 8, accepted September 8, 1992



XXth Rencontres des Blois



Baryonic blazar beams contain energetic photons, neutrinos and neutrons with comparable luminosities.











# Why neutrons?

XXth Rencontres des Blois



### expansion with continous acceleration



21st May 2008

XXth Rencontres des Blois





XXth Rencontres des Blois

Jörg P. Rachen



XXth Rencontres des Blois



### Summary on compact jets

- If the gamma ray emission of blazars is of hadronic origin, blazars are the most favoured sources of UHECR
  - can easily reach energies of > 300 EeV even for protons, due to (mildly) relativistic shocks and relativistic beaming
  - The same physics applies all FR-I radio galaxies (like Centaurus A)., i.e. sources are numerous and there is plenty of power
- Cosmic rays escape from blazars in collimated neutron beams
  - transport of protons to larger scales suffers from adiabatic losses
  - UHECR nuclei are supressed by photodisintegration in the source and by adiabatic losses
  - model makes predictions for diffuse neutrino flux

### Summary on compact jets



- If the gamma ray emission of blazars is of hadronic origin, blazars are the most favoured sources of UHECR
  - can easily reach energies of > 300 EeV even for protons, due to (mildly) relativistic shocks and relativistic beaming
  - The same physics applies all FR-I radio galaxies (like Centaurus A)., i.e. sources are numerous and there is plenty of power
- Cosmic rays escape from blazars in collimated neutron beams
  - transport of protons to larger scales suffers from adiabatic losses
  - UHECR nuclei are supressed by photodisintegration in the source and by adiabatic losses
  - model makes predictions for diffuse neutrino flux





### *Neutrons decay to protons following:*



At 60 EeV, ~15% of neutrons decay inside the lobe

Lobe isotropises protons up to e B R ~ 100 EeV

XXth Rencontres des Blois



### **Corollary:**

An alien UHECR detector located at 3.4 Mpc distance *inside the neutron beam* of Cen A would receive a UHECR flux

### 1000 times

higher than we do!



### *Neutrons decay to protons following:*



At 60 EeV, ~15% of neutrons decay inside the lobe

Lobe isotropises protons up to e B R ~ 100 EeV

n

n

XXth Rencontres des Blois

### Summary of questions:

- Is there a correlation of arrival directions with predictions for radio loud AGN (considering source power, orientation, possible deflection by other objects, realistic models for cosmic magnetic fields....)?
- Is the composition of cosmic rays up to 100 EeV consistent with (almost) pure proton composition?
- Is there a diffuse neutrino flux around 1 EeV about a factor of 3 above the Waxman-Bahcall bound (with evolution)?
- Is there a way to really distinguish hadronic and inverse Compton gamma ray emssion from blazars in simultaneous multifrequency observation campains?