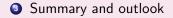
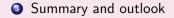
: Multi-Messenger Astronomy with Cen A

Michael Kachelrieß


NTNU, Trondheim

MK, S. Ostapchenko, R. Tomàs astro-ph/0805.2608

Outline of the talk

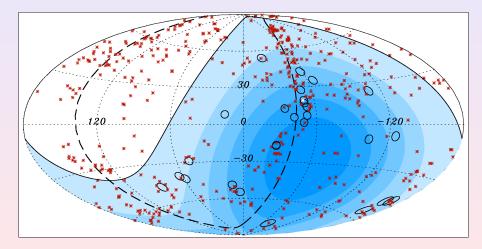

Auger correlation claim

- 2 Test by multi-messenger approach?
 - Cen A source & acceleration models
 - Our simulation
 - Results

Outline of the talk

- Auger correlation claim
- 2 Test by multi-messenger approach?
 - Cen A source & acceleration models
 - Our simulation
 - Results

・ロト ・同ト ・ヨト ・ヨト


Outline of the talk

- Auger correlation claim
- 2 Test by multi-messenger approach?
 - Cen A source & acceleration models
 - Our simulation
 - Results
- Summary and outlook

・ロト ・同ト ・ヨト ・ヨト

Correlations with AGNs: PAO analysis

• 27 CRs (\odot) and 472 AGN (*):

Rencontres de Blois 2008

Michael Kachelrieß Multi-Messenger Astronomy with Cen A

通 と く ヨ と く ヨ と

• at present blind analysis: "3 σ deviation from isotropy"

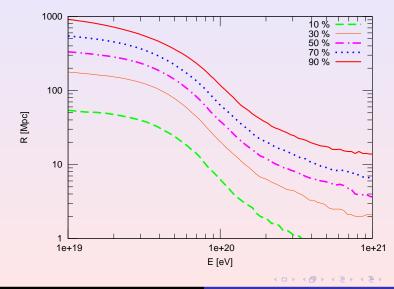
◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○

- \bullet at present blind analysis: "3 σ deviation from isotropy"
- angular scale ℓ consistent with expected deflections?

(4回) (注) (注) (注)

- \bullet at present blind analysis: "3 σ deviation from isotropy"
- angular scale ℓ consistent with expected deflections?
- confusion danger with other sources in supergalactic plane ($\ell \approx 3^\circ)$

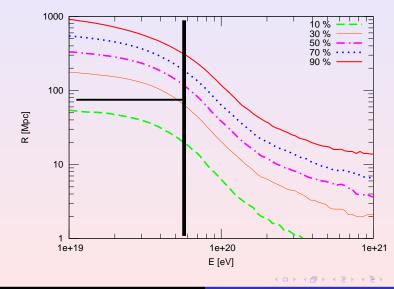
▲ □ → ▲ □ → ▲ □ → □ □


- \bullet at present blind analysis: "3 σ deviation from isotropy"
- angular scale ℓ consistent with expected deflections?
- confusion danger with other sources in supergalactic plane $(\ell \approx 3^\circ)$
- large fraction of all AGN required to accelerate to $E > 10^{20} \text{eV}$

・ 同 ト ・ ヨ ト ・ ヨ ト …

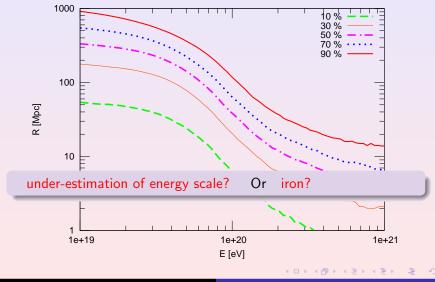
- \bullet at present blind analysis: "3 σ deviation from isotropy"
- angular scale ℓ consistent with expected deflections?
- confusion danger with other sources in supergalactic plane $(\ell \approx 3^\circ)$
- large fraction of all AGN required to accelerate to $E>10^{20}{\rm eV}$
- internal inconsistencies: energy and chemical composition

Energy threshold consistent with GZK horizon?


• 8 out of 13 CRs ($E \ge 57 \text{ EeV}$) correlated within 75 Mpc:

Rencontres de Blois 2008

Energy threshold consistent with GZK horizon?


• 8 out of 13 CRs ($E \ge 57 \text{ EeV}$) correlated within 75 Mpc:

Rencontres de Blois 2008

Energy threshold consistent with GZK horizon?

• 8 out of 13 CRs ($E \ge 57 \text{ EeV}$) correlated within 75 Mpc:

Rencontres de Blois 2008

Michael Kachelrieß

- \bullet at present blind analysis: "3 σ deviation from isotropy"
- angular scale ℓ consistent with expected deflections?
- confusion danger with other sources in supergalactic plane $(\ell \approx 3^{\circ})$
- large fraction of all AGN required to accelerate to $E > 10^{20} \text{eV}$
- internal inconsistencies:
 - energy scale
 - chemical composition
- independent/additional evidence?

伺い イヨン イヨン

- mechanism: shock acceleration vs. acceleration in regular fields
- location: core, hot spots, along the jet
- target: gas vs. photons

▲□ → ▲ □ → ▲ □ → …

- mechanism: shock acceleration vs. acceleration in regular fields
- location: core, hot spots, along the jet
- target: gas vs. photons

▲□ → ▲ □ → ▲ □ → …

- mechanism: shock acceleration vs. acceleration in regular fields
- location: core, hot spots, along the jet
- target: gas vs. photons

▲□ → ▲ □ → ▲ □ → …

- mechanism: shock acceleration vs. acceleration in regular fields
- location: core, hot spots, along the jet
- target: gas vs. photons

- neglect acceleration
- fix 2 basic scenarios: "core" and "jet"

• observations:

- *d* = 3.8 kpc
- $M = (0.5 2) \times 10^8 M_{\odot}$
- $\dot{M} = 6 \times 10^{-4} M_{\odot}$
- $L_X = 5 \times 10^{41} \text{erg/s}$
- \Rightarrow efficiency $\eta = 5\%$
 - supports standard thin, optical thick accretion disc with

$$T(r) = \left(\frac{3GM\dot{M}}{8\sigma\pi r^3} \left[1 - (R_0/r)^{1/2}\right]\right)^{1/4}$$

- add X-ray from hot corona
- simplify to 1-dim geometry

- observations:
 - $d = 3.8 \,\mathrm{kpc}$
 - $M = (0.5 2) \times 10^8 M_{\odot}$
 - $\dot{M} = 6 \times 10^{-4} M_{\odot}$
 - $L_X = 5 \times 10^{41} \text{erg/s}$
- \Rightarrow efficiency $\eta = 5\%$
 - supports standard thin, optical thick accretion disc with

$$T(r) = \left(\frac{3GM\dot{M}}{8\sigma\pi r^3} \left[1 - (R_0/r)^{1/2}\right]\right)^{1/4}$$

- add X-ray from hot corona
- simplify to 1-dim geometry

通 と く ヨ と く ヨ と

- observations:
 - $d = 3.8 \,\mathrm{kpc}$
 - $M = (0.5 2) \times 10^8 M_{\odot}$
 - $\dot{M} = 6 \times 10^{-4} M_{\odot}$
 - $L_X = 5 \times 10^{41} \text{erg/s}$
- \Rightarrow efficiency $\eta = 5\%$
 - supports standard thin, optical thick accretion disc with

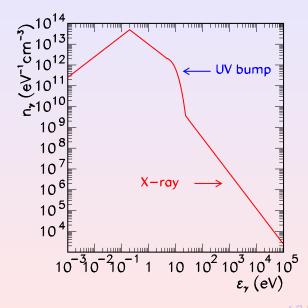
$$T(r) = \left(\frac{3GM\dot{M}}{8\sigma\pi r^3} \left[1 - (R_0/r)^{1/2}\right]\right)^{1/4}$$

- add X-ray from hot corona
- simplify to 1-dim geometry

通 と く ヨ と く ヨ と

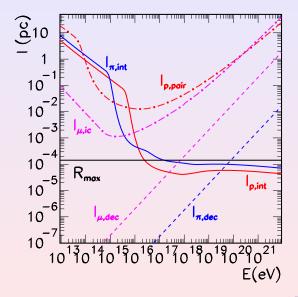
- observations:
 - *d* = 3.8 kpc
 - $M = (0.5 2) \times 10^8 M_{\odot}$
 - $\dot{M} = 6 \times 10^{-4} M_{\odot}$
 - $L_X = 5 \times 10^{41} \text{erg/s}$
- \Rightarrow efficiency $\eta = 5\%$
 - supports standard thin, optical thick accretion disc with

$$T(r) = \left(\frac{3GM\dot{M}}{8\sigma\pi r^3} \left[1 - (R_0/r)^{1/2}\right]\right)^{1/4}$$

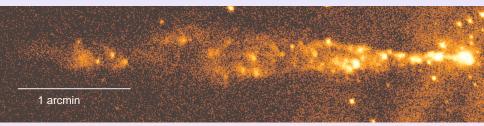

- add X-ray from hot corona
- simplify to 1-dim geometry

- observations:
 - *d* = 3.8 kpc
 - $M = (0.5 2) \times 10^8 M_{\odot}$
 - $\dot{M} = 6 \times 10^{-4} M_{\odot}$
 - $L_X = 5 \times 10^{41} \text{erg/s}$
- \Rightarrow efficiency $\eta = 5\%$
 - supports standard thin, optical thick accretion disc with

$$T(r) = \left(\frac{3GM\dot{M}}{8\sigma\pi r^3} \left[1 - (R_0/r)^{1/2}\right]\right)^{1/4}$$


- add X-ray from hot corona
- simplify to 1-dim geometry

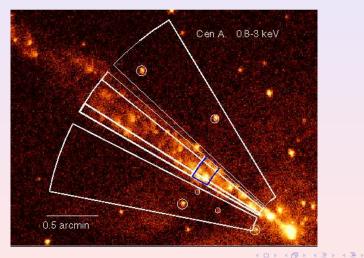
UV and X-ray background from the accretion disk


Rencontres de Blois 2008

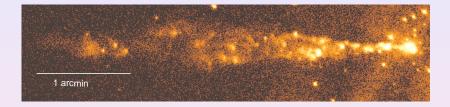
Lenght scales for acceleration close to the core

∢ ≣⇒

Chandra observation of X-ray emission in the jet


Rencontres de Blois 2008

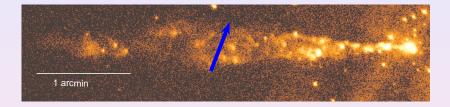
Michael Kachelrieß Multi-Messenger Astronomy with Cen A


・ロン ・回 と ・ ヨ と ・ ヨ と …

Chandra observation of X-ray emission in the jet

- divide in subareas
- separate fit to gas column density X and spectral index α

Chandra observation of X-ray emission in the jet: Results

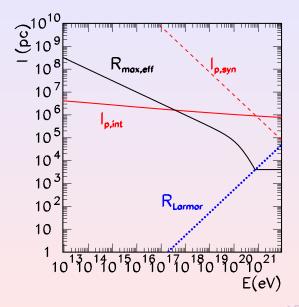


• $X = 1.5 \times 10^{21} / \text{cm}^2$ in the jet

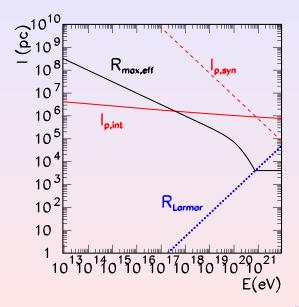
Rencontres de Blois 2008

Michael Kachelrieß Multi-Messenger Astronomy with Cen A

Chandra observation of X-ray emission in the jet: Results

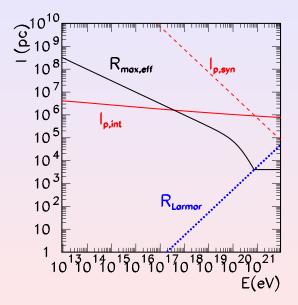


•
$$X = 1.5 \times 10^{21} / \text{cm}^2$$
 in the jet


- with d = 0.4 kpc and $\sigma_{pp} = 150$ mbarn:
- \Rightarrow interaction depth $au_{pp} \sim 0.01$

(1日) (日) (日)

Length scales for acceleration in the jet



Length scales for acceleration in the jet

Length scales for acceleration in the jet

- diffusion increases effective size
- for pp no threshold
- $\tau = 1$ for $E = 10^{17} \text{eV}$, optimal for neutrino telescope

Image: Im

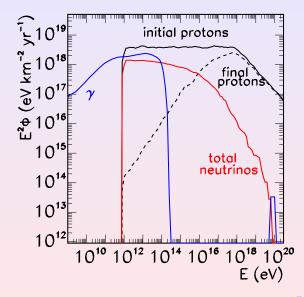
acceleration close to the core

acceleration in accretion shock/regular fields

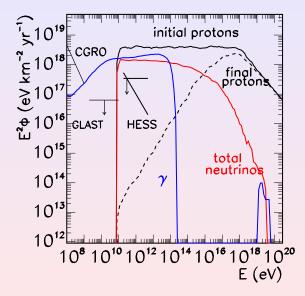
 $p\gamma$ interactions

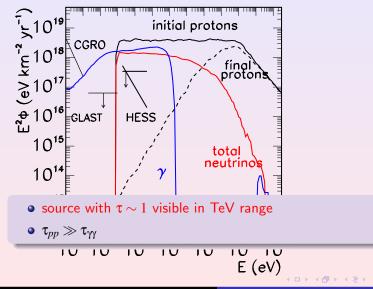
 $au_{\gamma\gamma}\gg 1$, synchrotron losses for e^\pm

acceleration in jet

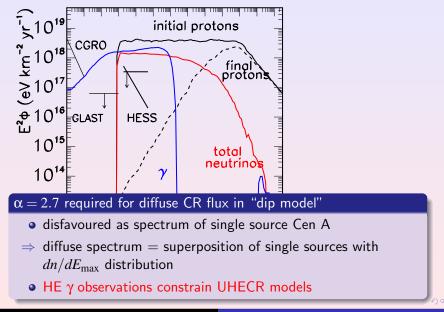

shock acceleration

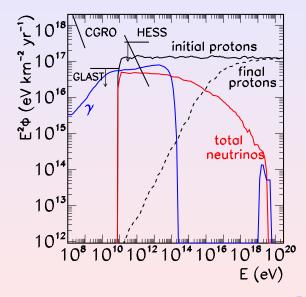
pp interactions


 $au_{\gamma\gamma} \ll 1$, synchrotron losses for e^\pm


Rencontres de Blois 2008

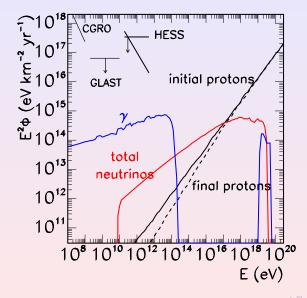
Results for acceleration in jet: broken power-law


Results for acceleration in jet: broken power-law

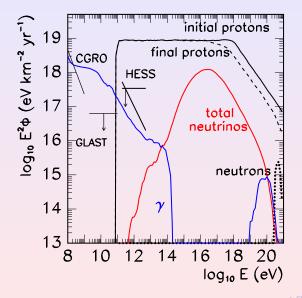

Rencontres de Blois 2008

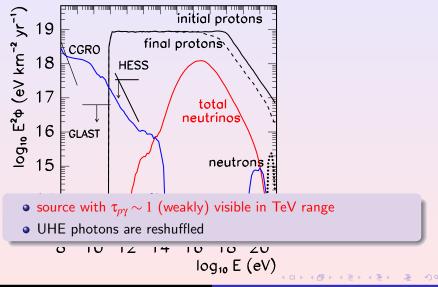
Results for acceleration in jet: broken power-law

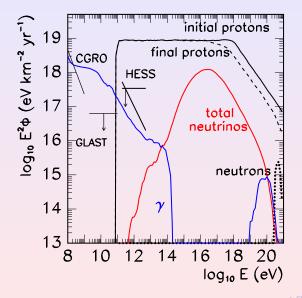
Rencontres de Blois 2008

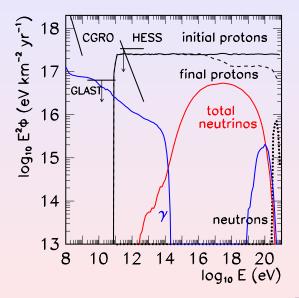

Results for acceleration in jet: $\alpha = 2$

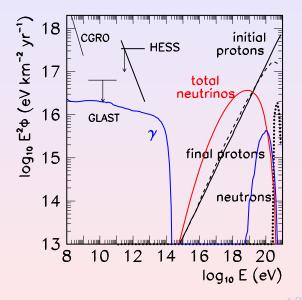
Rencontres de Blois 2008


∢ ≣ ▶

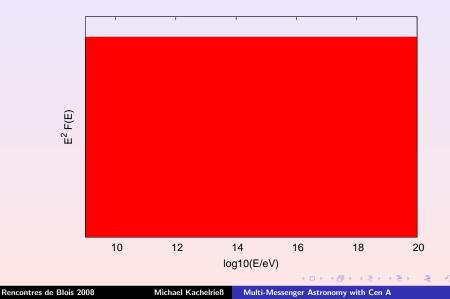

Results for acceleration in jet: $\alpha = 1.2$


Rencontres de Blois 2008


- - E →

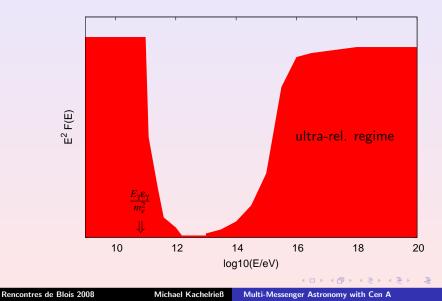


Rencontres de Blois 2008

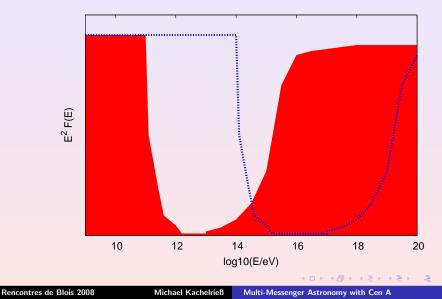


Rencontres de Blois 2008

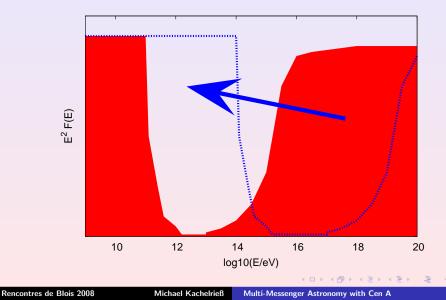
토 🖌 🛛 토


Regenerating TeV photons: a) in the source

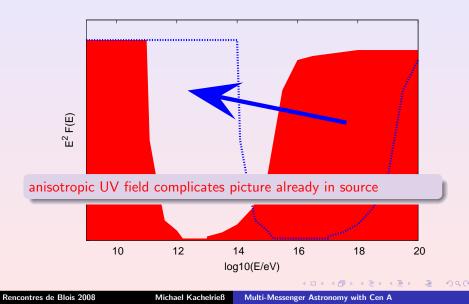
• injections spectrum $F_{\gamma}(E) \propto 1/E^2$


Regenerating TeV photons: a) in the source

• : thin above 10^{16} eV, ultra-rel. regime


Regenerating TeV photons: b) on CMB

• photons above $10^{16} eV$ cascade on CMB


Regenerating TeV photons: b) on CMB

• photons above 10^{16} eV cascade on CMB : fill up TeV range

Regenerating TeV photons: b) on CMB

• photons above 10^{16} eV cascade on CMB : fill up TeV range

- fixed n_{γ} and n_H by observations
- normalization of UHECRs by PAO AGN hypothesis

- fixed n_{γ} and n_H by observations
- normalization of UHECRs by PAO AGN hypothesis
- HE neutrino astronomy:
 - exploiting directional signal (=muons) requires northern experiment
 - event number most sensitive on steepness of CR spectrum: $10^{-4}\mbox{--few events per year}$

・ロト ・同ト ・ヨト ・ヨト

- fixed n_{γ} and n_H by observations
- normalization of UHECRs by PAO AGN hypothesis
- HE neutrino astronomy:
 - exploiting directional signal (=muons) requires northern experiment
 - event number most sensitive on steepness of CR spectrum: $10^{-4}\mbox{--few}$ events per year
- HE gamma astronomy:
 - $\bullet\,$ all cases promising apart from $\alpha \to 1$

・ロン ・回 と ・ ヨ と ・ ヨ と …

- fixed n_{γ} and n_H by observations
- normalization of UHECRs by PAO AGN hypothesis
- HE neutrino astronomy:
 - exploiting directional signal (=muons) requires northern experiment
 - event number most sensitive on steepness of CR spectrum: $10^{-4}\mbox{--few}$ events per year
- HE gamma astronomy:
 - $\bullet\,$ all cases promising apart from $\alpha \to 1$
 - $\alpha \to 1:$ can be excluded by UHECRs

(1日) (日) (日)

- fixed n_{γ} and n_H by observations
- normalization of UHECRs by PAO AGN hypothesis
- HE neutrino astronomy:
 - exploiting directional signal (=muons) requires northern experiment
 - event number most sensitive on steepness of CR spectrum: $10^{-4}\mbox{--few}$ events per year
- HE gamma astronomy:
 - $\bullet\,$ all cases promising apart from $\alpha \to 1$
 - $\alpha \rightarrow 1:$ can be excluded by UHECRs
- general:
 - TeV photon sources may be also good neutrino sources

・ロン ・回 と ・ ヨ と ・ ヨ と …

- fixed n_{γ} and n_H by observations
- normalization of UHECRs by PAO AGN hypothesis
- HE neutrino astronomy:
 - exploiting directional signal (=muons) requires northern experiment
 - event number most sensitive on steepness of CR spectrum: $10^{-4}\mbox{--few}$ events per year
- HE gamma astronomy:
 - $\bullet\,$ all cases promising apart from $\alpha \to 1$
 - $\alpha \rightarrow 1:$ can be excluded by UHECRs
- general:
 - TeV photon sources may be also good neutrino sources
 - pp may be more important than $p\gamma$ in jet

・ロト ・同ト ・ヨト ・ヨト