POLAR

A novel instrument to measure the linear polarization of the gamma-ray bursts prompt emission

> Estela Suarez (University of Geneva) On behalf of the POLAR collaboration

Blois 2008, 21 May 2008

INDEX

Gamma Ray Bursts (GRB)
POLAR

Concept
Present status
Monte Carlo simulations
Laboratory results

Summary

GAMMA RAY BURSTS (GRB)

- GRBs are flashes of gamma rays, at random places in the sky and at random times.
- Currently about 2 to 3 GRB are detected per week

They are the brightest events in the universe.

progenitor is unknown.

GAMMA RAY BURSTS (GRB)

Spectrum: similar to a broken power law

Typical light-curve

Light-curves, although very different from GRB to GRB, show three parts:

Pre-burst

- **Prompt emission**
- Afterglow

Prompt

emission

ORIGIN OF GRB

POLARIZATION IN GRB

Polarization can be produced by:

- Synchrotron radiation
- Cyclotron Emission
- Bremsstrahlung
- Compton Scattering
- Magnetic photon splitting

- The three most accepted models of GRBs predict different levels of linear polarization:
 - Fireball Model:
 - Cannonball Model: $P_{lin} = 0 100\%$

 $P_{lin} \sim 10-20 \%$

Electromagnetic Model: $P_{lin} \sim 50 \%$

Polarization can indicate which model is the correct one

UNIVERSITÉ DE GENÈVE Estela Suarez – POLAR - XX Rencontre Blois, May 2008

HIGH ENERGY POLARIMETRY

- Measured using Compton Scattering:
 - photons tend to scatter at right angles respect to the initial polarization vector:
 - η Azimuthal Scatter Angle !
 - θ Compton Scatter Angle

$$d\sigma = \frac{r_o^2}{2} d\Omega \left(\frac{E'}{E_o}\right)^2 \left(\frac{E_o}{E'} + \frac{E'}{E_o} - 2\sin^2\theta\cos^2\eta\right)$$

- Distribution in azimuth scattering angles:
 - Modulation curve

$$P = \frac{\mu_p}{\mu_{100}} = \frac{1}{\mu_{100}} \left(\frac{C_{\text{max}} - C_{\text{min}}}{C_{\text{max}} + C_{\text{min}}} \right)$$

from M. McConnell,2002

POLAR

REQUIREMENTS

- Compton polarimeter
- Simple, compact instrument:
 - Relies on given burst position and spectrum
- Dedicated for GRB observations only:
 - Large effective area
 - Large modulation factor
 - Large field of view
- Energy range for incoming photons:
 - 50keV 500keV

DESIGN

- 40x40 uniform scintillator array
 - Light, fast, and low-Z plastic
 - Scintillator size: 6x6x200mm³
 - Matching novel MAPM H8500

A_{eff} ≈ 400 cm²
 µ₁₀₀ ≈ 35%
 FoV ≈ ⅓ of the sky

MC SIMULATIONS

GEANT4 package (CERN)

- Size 240x240x200 mm³
- 6x6x200mm³ single plastic bars, wrapped with aluminum foil
- Aluminum wall 1mm thick
- Photon directions and polarization defined by user
- Any given energy spectrumSoftware analysis in ROOT

SOME RESULTS FROM SIMULATIONS

- Compton effect dominates
- Most photons deposit energy in several bars
- Trigger activation: at least 2 channels
- Selection of two highest E depositions
- Reacting pixels define geometry
- MC predicts clear modulation signal

Minimum Detectable Polarization: $E=10^{-5} \text{ erg/cm}^2 \rightarrow \text{MDP}_{3\sigma} \approx 10\%$ Several measurements per year!

LIGHT COLLECTION STUDIES

Simulations predict:

- 1. Around 45% of the optical photons reach PM
- 2. Differences for incoming gammas at top or bottom: 10-20 %
- 3. Polishing of the scintillator surface is very important

Experimental measurements are finished for 2 and 3 and they agree with the simulations.

LABORATORY RESULTS

UNIVERSITÉ DE GENÈVE Estela Suarez – POLAR - XX Rencontre Blois, May 2008

LIGHT COLLECTION

- Goal: optimize light output linearity
- Sources: ²⁴¹Am, ¹³⁷Cs, ⁹⁰Sr
- Wrapping: No coating, Al, Teflon, 3M[®] Foil
- Results:
 - Amplitude changes between bar ends less than 10%-15%
 - 3M[®] wrapping clearly makes light output highest and should be used
- Results are consistent with MC simulations

ASYMMETRY TESTS with 15 BARS

 Tests with 60% polarized photons from radioactive source (Cs¹³⁷, 290 keV)

Scintillator bars on MAPMT

Asymmetry =
$$\frac{N_{90} - N_0}{N_{90} + N_0}$$

 Asymmetry up to 12% depending on distance between plastics; draft data

DEMO-MODEL TESTS

DEMO = 2 out of 25 modules: - 2 x 64 BC400 bars (6x6x200 mm³ each) - 2 x H8500 MAPM

 Readout: specially designed electronic board

Tests:

- Polarized γ-rays from Cs¹³⁷
- 100% polarized γ-rays from synchrotron (SLS @ PSI)

DEMO-MODEL SETUP

SUMMARY

- POLAR Compton hard X-ray GRB polarimeter using low Z scintillators and MAPMT
- Compact 40x40 homogeneous array of 6x6x200 mm³ plastics
- ▶ $MDP_{3\sigma} \approx 10\%$ for GRB total energy of 10^{-5} erg/cm²; tens of detections/year
- First asymmetry results obtained demonstrating polarimetric capability. Demo-model measurements being performed at present.
- Engineering-Qualification Model will be ready in 2010.
- Accurate measurements of GRB polarization will:
 - Constrain theoretical models
 - Give crucial information for determining the nature of GRB central engine

POLAR COLLABORATION

- 1. Centre de Physique des Particules de Marseille (CPPM, France)
 - Ch. Tao

- 2. Département de physique Nucléaire et Corpusculaire (DPNC, Switzerland)
 - C. Leluc, S. Orsi, M. Pohl, D. Rapin, E. Suarez-Garcia⁴
- 3. Institute of High Energy Physics (IHEP, China)

- B. Wu, S. Xiang, S.N. Zhang
- 4. INTEGRAL Science Data Centre (ISDC, Switzerland)
 - **T.J.-L.** Courvoisier, D. Haas², N. Produit, R. Walter
- 5. Laboratoire d'Annecy de Physique des Particules (LAPP, France)

- G. Lamanna, J.-P. Vialle
- 6. Paul Scherrer Institut (PSI, Switzerland),

W. Hajdas, A. Mtchedlishvili

7. The Andrzej Soltan Institute for Nuclear Studies (IPJ, Poland)

M. Gierlik, R. Marcinkowski, G. Wrochna

LAUNCHING POSSIBILITIES

▶ Chinese Space Lab, ~2012

International Space Station (ISS)

Estela Suarez – POLAR - XX Rencontre Blois, May 2008