

Recent observations of Active Galactic Nuclei with H.E.S.S.

Francesca Volpe for the H.E.S.S collaboration Laboratoire Leprince Ringuet Ecole Polytechnique - France XXth Rencontres de Blois 21st May 2008

The H.E.S.S. array of Cherenkov Telescopes

• 4 Cherenkov telescopes array located in Namibia stereoscopic observation mode

- 107 m² mirror area per telescope
- Photomultiplier camera:
 960 PMTs, ~5 deg field of view
- \cdot Energy range: 100 GeV up to several 10 TeV dE/E \sim 15%
- Angular resolution: ~0.1 deg per event

Details in W. Hofmann's talk in this conference

22 VHE extragalactic sources (I)

Object	Redshift	Туре	1 st Detection	EGI
M 87	0.004	FR I	HEGRA*	Ν
Mkn 421	0.030	HBL	Whipple*	Ŋ
Mkn 501	0.034	HBL	Whipple*	Ŋ
1ES 2344+514	0.044	HBL	Whipple*	Ν
Mkn 180	0.046	HBL	MAGIC	Ν
1ES 1959+650	0.047	HBL	7-Tel. Array*	Ν
BL Lac	0.069	LBL	MAGIC	Ŋ
PKS 0548-322	0.069	HBL	H.E.S.S.	Ν
PKS 2005-489	0.071	HBL	H.E.S.S.	Ν
RGB J0152+017	0.080	HBL	H.E.S.S.*	N
W Comae	0.102	IBL	VERITAS	Ŋ
PKS 2155-304	0.116	HBL	Mark VI*	Ŋ
H 1426+428	0.129	HBL	Whipple*	N
1ES 0806+524	0.138	HBL	VERITAS	Ν
1ES 0229+200	0.139	HBL	H.E.S.S.	Ν
H 2356-309	0.165	HBL	H.E.S.S.	Ν
1ES 1218+304	0.182	HBL	MAGIC*	Ν
1ES 1101-232	0.186	HBL	H.E.S.S.	Ν
1ES 0347-121	0.188	HBL	H.E.S.S.	N
1ES 1011+496	0.212	HBL	MAGIC	Ν
PG 1553+113	>0.25	HBL	H.E.S.S.*	Ν
3C 279	0.536	FSRQ	MAGIC	Ŋ

* = detected by ≥ 2 observatories

Most recent HESS detection: Aharonian et al. A&A 481 (2008) L103

≻RGB J0152+017 (2% Crab)

- 6,6 σ in 15 h (in 2 months) 173 γ
- > Spectral index Γ = 2.95 ±0.36 (0.3- 2 TeV)
- >Typical SED well described by SSC model
- No significant variability XXth Rencontres des Blois

22 VHE extragalactic sources (II)

> The 3rd generation of Cherenkov Telescopes has greatly increased the sensitivity allowing 22 extragalactic detections

>Most of these source are faint (few % of the Crab)

>Monitoring some of them permits to detect flaring episodes (monitoring strategies are not so easy in VHE domain)

<u>Historically:</u>

- for ~ 1/4 of TeV emitters, no variability has been detected
- few present weak variability (monthly, daily scales)

•only for H1426+428, 1ES 1959+650, Mkn 501, Mkn 421 and PKS 2155-304 detected flares of smaller time scales

PKS 2155-304 observed by HESS in 2006 with an unprecedented statistics permits to have access to AGN temporal and spectral variability.

F. Volpe

Outline

>PKS 2155-304 in active state

- •Observation in 2006 (exceptional flaring episodes)
 - spectral and flux variability

•Multi-wavelength observations with CHANDRA satellite

-correlation X- γ ray flux

>Temporal variability study: is the variability due to a stationary gaussian process?

≻Conclusions

PKS 2155-304 observations

PKS 2155-304 (z=0.116)

High-frequency peaked BL-Lac object (HBL) - the first seen by HESS

Discovered in TeV in 1999 (Mark 6) / Confirmed by H.E.S.S.
 Chadwick et al. (1999), Aharonian et al. , A&A, 430, 865 (2004)

Extensive multi wavelength studies in 2003 and 2004
 Simultaneous radio, optical ,x-ray & TeV observations
 Aharonian et al. 2005, A&A, 442, 895 (2005),

Source always detected in TeV!
 "quiescent state" (0.08-0.15 Crab)

Significant nightly HESS
 detection systematic

PKS 2155-304 (HESS campaign in 5 yrs)

MJD

F. Volpe

PKS 2155-304: 1st flaring night

≻July 28, 2006 (MJD 53944)

>1.32h live time

≻5 peaks

>fastest rise time 174 ± 28 s

>One of the fastest VHE-flux variability (also Mkn 501 seen by MAGIC)

>Causality arguments imply a limit on the size of the emission region $R \le c t_{var} \delta/(1+z) \Longrightarrow$ $\delta > 60-120 R/R_{s}$ for $1-2 \times 10^9 M_{\odot}$ SMBH

 $\blacktriangleright \text{Despite 50} \times \text{higher flux } \Delta \Gamma < 0.2$

No evidence of significant spectral variability!

PKS 2155-304: 2nd flaring night

HESS Spectrum & Flux for 7/14 minute bins

- Almost full night coverage (~6.6h)
 Maximum peak
 7 I_{crab}
- Evidence of a slight spectral variability
 ΔΓ ~ 0.5
 F. Volpe

HESS & Chandra simultaneous observations

HESS - CHANDRA correlations

Strong correlation: same population responsible of the emissions in the two energy ranges ->standard scenario (SSC)
 Modeling the ~cubic correlation (difficult in SSC scenario)

Temporal variability of PKS 2155-304

Quantifying the variability (1)

>Empirical variables estimated on the LC

depending on the binning $\Delta T\,$ and on the duration of the observation $T\,$

•Flux variance
$$S^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (\phi_{i} - \overline{\phi})^{2}$$

•Excess rms $\sigma_{xs} = \sqrt{S^{2} - \overline{\sigma_{err}^{2}}}$ where $\overline{\sigma_{err}^{2}} = \frac{1}{N} \sum_{i=1}^{N} \sigma_{err,i}^{2}$ error meas. contrib.
•Fractional variability $F_{var} = \frac{\sigma_{xs}}{\overline{\phi}}$
•Doubling time $\min(T_{2}^{ij})$ or average 5 smallest (T_{2}^{ij})
where $T_{2}^{ij} = \left| \frac{T_{i} - T_{j}}{\phi_{i} - \phi_{j}} \right| \cdot \frac{\phi_{i} + \phi_{j}}{2}$

F. Volpe

Doubling Times

$$T_{2} = \min(T_{2}^{ij}) \text{ or } \widetilde{T}_{2} = \left\langle 5smallest(T_{2}^{ij}) \right\rangle \text{ where } T_{2}^{ij} = \left| \frac{T_{i} - T_{j}}{\phi_{i} - \phi_{j}} \right| \cdot \frac{\phi_{i} + \phi_{j}}{2}$$

MJD 53944	$T_2(\min)$	$\widetilde{T}_2(\min)$
$\Delta T=1 \min$	1.28 ± 0.38	2.84 ± 1.0
ΔT=2 min	2.63 ± 0.54	4.53 ± 1.59

MJD 53946	$T_2(\min)$	$\widetilde{T}_2(\min)$
1 min	1.38 ± 0.37	2.33 ± 0.97
2 min	3.49 ± 1.0	6.22 ± 2.22

Strongly depending on the sampling $\Delta T\, {l\!\!l}$

 $>T_2$ is a lower limit for the fastest variability (limited by the resolution of the instrument)

>And what about the ultimate causality "time scale"?

Important to address this question because the fastest variability is a direct access to the emission region

F. Volpe

Quantifying the variability (2)

>Power Spectral Density (PSD)

an intrinsic property of the source state

The flaring period of PKS 2155-304 allowed to make the first estimate of a PSD in VHE domain

in the 1st flaring night:

-power law Fourier Spectrum of index -2 similar in X-rays ->red noise process

- accessibility 10 ⁴-10 ²Hz

In X-rays the variability of Seyfert, Binaries and (recently also) of AGN is described as a noise process characterizing the PSD

 \Rightarrow Studies modeling the PSD with simulations

Is the variability of PKS 2155-304 in the flaring period described by a Stationary Gaussian Process?

What is the gaussian variable? - Flux Φ -> additive process Average flux completely independent of its variance (or rms)

-In(Φ)-> multiplicative process Expected strong correlation between average flux and rms

Many cases of such correlation for Seyferts, X-ray binaries (P. Uttley et al., MNRAS 359 (2005) 345) .. also for few AGN

F. Volpe

Normal or log-normal?

Time Check the excess rms-flux correlation in 2 cases for PKS 2155-304:

- T=20 min and ΔT =1 min
- T=80 min and ΔT =4 min

Excess rms-flux correlation

Correlation $\Rightarrow 0.36 < \rho < 0.81$ at 95% confidence interval Negligible measurement errors on the correlation factor Gaussian process excluded at 4 sigma level

 $Correlation \Rightarrow 0.84 < \rho < 0.98$

Gaussian process excluded at 7 sigma level

Well described as log-normal process

Charaterizing with a log-normal process

Parametric estimation of the PSD in the assumption of a lognormal process

$$\frac{dP(\ln\Phi)}{dv} = K_{\ell} \left(\frac{v_{ref}}{v}\right)^{\alpha}$$

-PSD depending on 2 parameters α and K_{ℓ}

-the reference frequency is chosen conventionally: $v_{ref} = 10^{-4}$ Hz

Used simulations of realistic time series defined by PSD corresponding to different values of the 2 parameters

Compared data with simulation for 3 observables : excess rms-flux correlation, structure functions and doubling time.

 \triangleright Parameters α and K_{e} constraint using maximum likelihood fit with experimental distributions

F. Volpe

Self consistent determination of the parameters

- Excess rms-flux : same correlation as in the experimental cases
 •T=20 min and ∆T=1 min
 •T=80 min and ∆T=4 min
- Structure Function (SF)

$$SF(\tau) = \left\langle \left[\Phi(t) - \Phi(t+\tau) \right]^2 \right\rangle$$

Doubling Time

Determined 95% confidence intervals for the parameters ($\alpha, K_{\ell})$

✓ SF better determin a and K_ℓ
 ✓ rms discriminate between
 gaussian or log-normal process
 ✓ T₂ not sensitive to a

-PSD compatible with that of a red noise (α =2.0±0.2) -the power K_l at 10 ⁴Hz is Log(K_l/Hz ¹)=3.1±0.2

Conclusions (1)

>Monitoring PKS2155-304 has allowed to

 \cdot detect an active state in July 2006 followed by the detection of two extraordinary flares

fastest time variability

spectral variability

 make multi-wavelength observation with the CHANDRA satellite in the second flaring night

strong correlation

•no lag

·more than quadratic correlation between X and $\gamma\text{-rays}$

Conclusions (2)

First evidence in the VHE domain of a strong correlation between excess rms and flux for PKS 2155-304

>Variability of this source can be accounted for a log-normal stationary process. \Rightarrow Multiplicative process originating its variability

> Parametric determination of the PSD.

Consistent determination of the parameters with three methods Compatibility with a red noise process between 10 $\,^4\!and$ 10 $\,^2\!Hz$

Open points:

-Where the variability originates in AGN? And how is this related to the emission? Models should be consistent to the observed correlation between excess-rms and flux.

- Ultimate causality time scale : if there is no cutoff in the PSD at high frequencies, future CherenkovTelescopes (CTA) should be able to lower the limit in the measured doubling times.