DM-TPC: a new approach to directional detection of Dark Matter

Gabriella Sciolla

MIT

Outline:

- Why directional detection of DM
- DM-TPC detector concept
- Recent results: first evidence of "head-tail" effect
- Toward a full-scale detector
- Conclusion

Rencontres de Blois, May 21, 2008

Goal #1: Directional detection of DM

In presence of backgrounds, the most convincing proof of direct observation of DM requires correlation with astrophysical phenomena

What to look for:

- WIMP wind of 220 km/s
- Direction: Cygnus

<u>Clear signature:</u>

• Daily asymmetry of 30-100%

Experimental requirement:

• Directional DM detector

Directional detection provides:

Unambiguous positive observation of DM in presence of backgrounds
 Test our understanding of DM (start "Underground WIMP astronomy")

Directional DM detectors

 Direction of incoming WIMP is encoded in direction of nuclear recoil

- How to detect the direction of recoils?
 - Solid/liquid detectors --> low-pressure gaseous detectors
 - A 50 keV F in CF_4 @ 40 torr recoils ~2 mm

Gabriella Sciolla DM-TPC: a new approach to directional detection of Dark Matter

Goal #2: Spin-dependent interactions

- WIMPs can scatter elastically on nuclei via
 - Spin-independet interactions
 - cross-section scales with the mass of the nucleus: $\sigma{\sim}A^2$
 - Spin-dependent interactions
 - cross-section is nonzero only if the nucleus has a nonzero spin
- Spin-dependent interactions may be enhanced by orders of magnitude compared to spin-independent
 - E.g.: in models in which LSP has substantial Higgsino contribution

Chattopadhyay and D.P. Roy, Phys. Rev. D 68(2003) 33010 Murakami B. and J.D. Wells, Phys. Rev. D 64 (2001) 15001 Vergados, J., J. Phys. G 30 (2004) 1127

- Weaker limits for spin-dependent interactions
 - Limits on spin-independent x-section: ~10⁻⁴⁴-10⁻⁴³ cm²
 - Limits on spin-dependent x-section: ~10⁻³⁷-10⁻³⁶ cm²

Spin-dependent searches are promising and almost unexplored

Gabriella Sciolla

DM-TPC: a new approach to directional detection of Dark Matter

7 orders of

magnitude!

DM-TPC Collaboration

S. Ahlen, D. Avery*, H. Tomita, A. Roccaro Boston University

> N. Skvorodnev, H. Wellenstein Brandeis University

O. Bishop*, B. Cornell*, D. Dujmic, W. Fedus*, P. Fisher, S. Henderson, A. Kaboth, J. Monroe, T. Sahin*,
G. Sciolla, R. Vanderspek, R. Yamamoto, H. Yegoryan* Massachusetts Institute of Technology

Funding from NSF, DOE (ADR), and MIT (Pappalardo Fellowship, Physics Department, MKI, Reed Fund)

DM-TPC: detector concept

- Low-pressure CF₄ TPC
 - 50-100 torr \rightarrow F recoil ~1-2mm
- Optical readout (CCD)
 - Image scintillation photons produced in avalanche
 - Low-cost, proven technology
- Amplification region
 - Wire planes --> mesh detector
 - Woven mesh 25µm, 250µm pitch
- CF₄ is ideal gas
 - <u>F: spin-dependent interactions</u>
 - Good scintillation efficiency
 - Low transverse diffusion
 - Non flammable, non toxic

Gabriella Sciolla

DM-TPC: a new approach to dir

What we measure

3 fundamental measurements (CCD)

- E_{recoil} from total scintillation light
 - Integral of CCD signal
- Reconstructs recoil track (in 2D)
 - Pattern recognition in CCD
- Sense of direction ("head-tail")
 - Gains an additional order of magnitude
 - A.Green, B.Morgan(astro-ph/0609115)
 - dE/dx <u>decreases</u> along recoil track
 - Low energy, below Bragg peak

Additional measurements (PMT)

- 3rd coordinate of recoil (// v_{drift})
- Trigger

Gabriella Sciolla

Bragg curve for 80 keV F recoil from WIMP in CF_4

Background rejection

- Excellent rejection of gammas
 - 8 hours run with 8 μ Ci ¹³⁷Cs inside prototype: no evts
 - Rejection factor ~2/10⁶
- Excellent discrimination against α and $e^{\scriptscriptstyle -}$
 - By measuring both energy and length of recoil
 - For pressure of 50 torr
 - WIMP/neutrons: 30 keV --> 1 mm
 - electrons: 15 keV e- (same ionization) --> 30 mm
 - alphas: 7 keV α --> 1 mm (below threshold)
- Neutrons
 - Underground data-taking
 - Passive and active neutron shielding
 - Directionality!

Prototypes

First generation prototype

- Prove detector concept & first observation of "head-tail" effect
- 10x10 cm² wires planes
- Drift ~ 2.6 cm
- Camera: Finger Lakes Instrumentation; Kodak KAF0401 chip 768x512 (9x9mm) cooled @-20C; 55mm lens

Second generation prototype

- ~20 cm diameter meshes
- Drift: up to 25 cm
- Camera: Apogee U2-ME
- Kodak KAF-1603ME, 1536x1024 pixels
- Lens: Schneider Xenon 0.95/17

Gabriella Sciolla

- Bragg peak of alphas: well understood detector
- Diffusion studies: max drift distance ~ 25 cm $\sigma[\mu m] = 324 \oplus 36\sqrt{\Delta z}$
- Light yield calibration: stable operations for gas gain $\sim 10^4$ - 10^5

Gabriella Sciolla DM-TPC: a new approach to directional detection of Dark Matter

Head-tail studies:

Recoils from low-energy neutrons

- Nuclear recoils using 14 MeV neutrons from D-T tube
 - DM: F has lower energy but is better aligned with WIMP direction
- Short runs with ²⁵²Cf source

Observation of "head-tail" in F recoils

Measure skewness of light yield along wire

Gabriella Sciolla

DM-TPC: a new approach to directional detection of Dark

arXiv:0801.2687

arXiv:0801.2687

Recent progress: mesh detectors

- Results shown so far obtained with wire-based detectors
- Recently we moved to mesh-based amplification region
 - ID --> 2D at no additional cost!
 - Sensitive to a whole new level of details: "digital bubble chamber"
- Head-tail capability preserved

Mesh detector: ²⁵²Cf run @ 75 torr

Next step: ~ m³ detector

Goals

- Prove detector technology on realistic scale
- Underground backgrounds studies
- Set scientifically competitive limit on spin-dependent interactions with directionality

Mass: 250-500 g/m³

1 year underground run: 90-180 kg-day / m³

Timescale:

- Design and build: 2008
- Commissioning and underground run: 2008-2009

Very preliminary

Sensitivity of 1 m³ detector (surface run)

Very preliminary

Sensitivity 1 m³ underground

Conclusion

- DM-TPC collaboration is making rapid progress toward development of new Dark Matter detector
 - Directionality, spin-dependent interactions, optical readout (<\$)
- Prototype I proved detector concept (2006-2007)
 - First observation of head-tail effect in low-energy neutrons
- ~1 m³ module (2008-2009)
 - One year of data taking underground
 - Study backgrounds, perfect detector design
 - Competitive limit on spin-dependent cross-section w/directionality
- Large DM-TPC detector is an ideal candidate for DUSEL
 - Size: O(10² kg)
 - Second generation detector: not only unambiguous observation of WIMPs, but with directionality start of "WIMP astronomy"