Point Source Searches in IceCube

Jon Dumm for the IceCube Collaboration May 21, 2008, Blois

Outline

Intro to IceCube, analysis method

and the second second

Science results

IEN YORK AR GUIRD

through the earth

IceCube Neutrino Observatory

IceCube

up to 80 strings with 60 Digital Optical Modules 4800 DOMs 17 meters between them 125 meters between strings 1 Giga Ton Detector No single point failure in a string! DOM failure rate about 1%

Now: 2400 DOMs on 40 strings!

IC40 down-going muon event

Challenges in IceCube for point sources

- Down-going muons from CR showers misreconstructed as up-going
 - Particularly coincident muons from independent showers
 - Must reject with tight quality cuts
- Up-going atmospheric neutrinos from CR showers on other side of Earth
 - Irreducible background when looking for extra-terrestrial neutrinos

At the depth of IceCube, ~2000m

Unbinned Maximum Likelihood Analysis

 Partial Prob for each event 	$P_i(x, n_s) = \frac{n_s}{N} S_i(x) + \frac{N - n_s}{N} B_i(x)$
 Likelihood function 	$L(n_s) = \prod P_i(x_i, n_s)$
 Log Likelihood Ratio 	$\log \lambda = \log rac{L(\hat{n}_s)}{L(n_s=0)}$

 \hat{n}_s is the number of signal events which maximize the likelihood $S_i(x)$ is the signal pdf, based on individual reconstructed uncertainty estimates $B_i(x)$ is the background pdf, based on dec. distribution of data

Determine significance by evaluating Log Likelihood Ratio over background-only (scrambled) datasets

Braun et al, arXiv:0801.1604

Blois, France

Jon Dumm

First IC9 Skymap

233 up-going events in 137d; median ang res = 2°

Max deviation of 3.35 sigma at ra=276.6°, dec=20.4°

Chance probability of hottest spot from background = 60%

Presented at ICRC2007, C. Finley, J.Dumm

IC9, A priori sources

90% C.L. upper limits

Object	(r.a. , dec) :	sigma	n _s est.	n _s	Φ
MGRO J2019+37	(304.83,36.83) :	0.00	0.0	2.6	11.2
Cyg OB2/TeV J2033+4130	(308.29,41.32) :	0.24	0.2	2.9	13.7
<u>Mrk</u> 421	(166.11,38.21) :	0.00	0.0	2.6	11.8
Mrk 501	(253.47,39.76) :	0.00	0.0	2.6	12.0
1ES 1959+650	(300.00,65.15) :	0.00	0.0	3.1	13.6
1ES 2344+514	(356.77,51.71) :	0.00	0.0	2.7	10.9
H 1426+428	(217.14,42.68) :	0.00	0.0	2.9	13.3
BL Lac (QSO B2200+420)	(330.68,42.28) :	0.29	0.4	3.0	13.9
3C66A	(35.67,43.04) :	0.00	0.0	2.8	12.9
3C 454.3	(343.49,16.15) :	1.09	0.7	3.7	14.9
4C 38.41	(248.82,38.14) :	0.00	0.0	2.6	11.8
PKS 0528+134	(82.74,13.53) :	0.00	0.0	2.7	9.9
3C 273	(187.28, 2.05) :	0.00	0.0	2.5	11.1
M87	(187.71,12.39) :	0.68	0.5	3.3	11.8
NGC 1275 (Perseus A)	(49.95,41.51) :	0.00	0.0	2.7	12.7
Cyg A	(299.87,40.73) :	0.41	0.4	3.0	13.6
SS 433	(287.96, 4.98) :	0.13	0.1	2.3	8.0
Cyg X-3	(308.11,40.96) :	0.52	0.4	3.1	14.4
Cyg X-1	(299.59,35.20) :	0.53	0.4	3.0	12.7
LS I +61 303	(40.13,61.23) :	0.00	0.0	3.0	13.5
GRS 1915+105	(288.80,10.95) :	0.00	0.0	2.7	9.4
XTE J1118+480	(169.55,48.04) :	0.00	0.0	2.6	11.5
GRO J0422+32	(65.43,32.91) :	0.64	0.8	3.1	12.9
Geminga	(98.48,17.77) :	0.00	0.0	2.5	10.2
Crab Nebula	(83.63,22.01) :	1.77	1.6	5.0	20.3
Cas A	(350.85,58.82) :	0.67	0.5	3.9	16.5

On a list of pre-determined sources, largest deviation of 1.77 Sigma at Crab

65% chance of 1 in 26 sources having this sigma from background alone

IC22 analysis almost ready Transition to Atms Nu in IC22

IC22 scrambled skymap

~6000 neutrino candidates in 300d of IC22

 \sim 1.5° median resolution

IC22 sensitivity studied

E⁻² average sensitivity $\Phi^0 = 1.7 \times 10^{-11}$ TeV⁻¹ cm⁻² s⁻¹

Jon Dumm

Adding Energy to Likelihood

Any observable that distinguishes signal from background can $P(E_i | \gamma=2)$ be incorporated into the likelihood analysis

 $P(E_i | \gamma=3)$ First try something simple - the number of channels hit.

Adding Energy to Likelihood

Simulated E⁻² source at declination +30:

5-sigma Discovery potential (Power 50%):

without energy term in likelihood: 6.1×10^{-8} GeV⁻¹ cm⁻² s⁻¹ (E/GeV)⁻² (mean number of source events: 15)

with energy term in likelihood: 4.2×10^{-8} GeV⁻¹ cm⁻² s⁻¹ (E/GeV)⁻²
(mean number of source events: 10.5)
Jon DummBlois, FranceJon Dumm

Year	Livetime		
2000	197 d		
2001	193 d		
2002	204 d		
2003	213 d		
2004	194 d		
2005	199.3 d		
2006	187 d		
Total	3.8 Yr.		

E2Φ < µ90*10⁻¹¹ TeV cm⁻²s⁻¹ @90% CL 95 of 100 data sets randomized in RA have a significance \ge 3.38 σ

Selected Sources

Source	μ ₉₀	P-value
Crab	4.62	0.10
MGRO J2019+37	4.14	0.077
Mrk 421	0.67	0.82
Mrk 501	2.97	0.22
LS I +61 303	9.62	0.03
Geminga	10.72	0.0086

J. Braun

The probability of obtaining $p \le 0.0086$ for at least one of the 26 sources is 20%

Performance, now and then

Effective area for neutrinos

Cumulative PSF for neutrinos

Point-source Limits

Multi-messenger studies

- More can be gained if you know more about your sources
 - Flaring (e.g. AGN) or transient (e.g. GRB) coincidence studies
- Starting to define many partnerships
 - MAGIC, ROTSE, Swift, AGILE, RATAN, GLAST, LIGO, VERITAS

Conclusions

- 1 year of 9-string data unblinded
- 1 year of IceCube 22-string data almost ready for unblinding; already expecting an improvement over AMANDA 7-yrs
- IceCube 40-string configuration taking data, ready for discovery!
- IceCube ~80-string configuration ready by 2011