Neutrino Properties and Neutrino Telescopes

Irina Mocioiu

Penn State

Rencontre de Blois 2008, May 21, 2008

Neutrino Telescopes

- AMANDA/ICECUBE : Cerenkov light in ice (South Pole)
- ANTARES, NEMO, NESTOR, etc. : Cerenkov light in water (Mediterranean)
- RICE: radio Cerenkov in ice (South Pole)
- ANITA: radio Cerenkov from ice (balloon at South Pole)
- **PIERRE AUGER**: air showers (Argentina,...)

- ...

What to look for?

- Point sources
- Diffuse fluxes
 - from astrophysical objects
 - from cosmic ray interactions
 - from dark matter annihilation
 - ...
- Correlations with other observations:

cosmic rays, gamma rays...

Lessons for Particle Astrophysics

Weak interactions

- access to dense, violent envirenoments
- test mechanism powering astrophysical sources
- cosmic ray acceleration processes
- cosmic ray propagation and intergalactic photon backgrounds

- ...

Lessons for Particle Physics

high energies, beyond those accessible in colliders, etc. weak interactions

- neutrino interaction cross-sections (in Standard Model!)
- neutrino properties
- new interactions/particles
- dark matter

- ...

How to do it?

- measure all you can!
- take into account everything you know/can think about!
- identify the right observables!
 - energy distributions
 - angular distributtions
 - flavour composition

Remember the Sun:

- John Bahcall, Ray Davis: Phys. Rev. Lett. 12, 300 (1964), Phys. Rev. Lett. 12, 303 (1964): solar neutrino experiment: "... to see in the interior of a star and thus verify directly the hypothesis of nuclear energy generation in stars"

- 1970 Solar neutrino problem
- solar model versus neutrino properties
- after 2001 SNO CC/NC, Kamland reactor: neutrino oscillations
 + back to the Sun!

Sources

- flavor composition
 - e.g. mostly π decays

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$$

$$\downarrow \\ e^{+} + \overline{\nu}_{\mu} + \nu_{e}$$

$$\Rightarrow \nu_{e} : \nu_{\mu} : \nu_{\tau} = 1 : 2 : 0$$

- energy distribution
- normalization
- correlations with photons, protons, etc.
- Source distribution: point back to source neutrino astronomy

Sources

Not always ν_e : ν_μ : $\nu_\tau = 1$: 2 : 0

- neutron decay, etc. (e.g. GZK neutrinos)
- energy dependent flavour ratios
- energy thresholds
- energy losses
- matter effects (O. Mena, I. M., S. Razzaque)

Most sources: density too low, not enough column density

 \rightarrow matter effects negligible

Some sources: can reach resonance \Rightarrow significant matter effects

- e.g: neutrinos produced in jets of supernovae
 - S. Razzaque, P. Meszaros, E. Waxman

 $\diamond~\pi$ decay 1 : 2 : 0 modified by 20% effects at the source

+ long distance vacuum oscillations + Earth matter effects

→ non-standard energy dependent flavour compositions

depends on neutrino parameters and density profile of source

Propagation Through Space

Neutrino Oscillations over long distances

- u_{μ} and u_{τ} maximally mixed:

 $F_{\nu_e}^0: F_{\nu_\mu}^0: F_{\nu_\tau}^0 = 1:2:0 \Rightarrow \nu_e: \nu_\mu: \nu_\tau = 1:1:1$

• sometimes $F_{\nu_e}^0$: $F_{\nu_{\mu}}^0$: $F_{\nu_{\tau}}^0 \neq 1$: 2 : 0 \Rightarrow Three flavour mixing relevant

$$F_{\nu_{e}} = F_{\nu_{e}}^{0} - \frac{1}{4} \sin^{2} 2\theta_{12} (2F_{\nu_{e}}^{0} - F_{\nu_{\mu}}^{0} - F_{\nu_{\tau}}^{0})$$

$$F_{\nu_{\mu}} = F_{\nu_{\tau}} = \frac{1}{2} (F_{\nu_{\mu}}^{0} + F_{\nu_{\tau}}^{0}) + \frac{1}{8} \sin^{2} 2\theta_{12} (2F_{\nu_{e}}^{0} - F_{\nu_{\mu}}^{0} - F_{\nu_{\tau}}^{0})$$

J. Jones, I.M, M. H. Reno, I. Sarcevic

• much smaller effects from deviation from maximal atmospheric mixing, θ_{13} , CP violation

Propagation Through Matter

- interaction cross-sections
 - in the Standard Model

Parton Distribution Functions extrapolations at high energies

- beyond the Standard Model
- energy losses
- flavour composition
- other new physics

Propagation Through Matter

Above $\sim 40~\text{TeV}$ Earth opaque to neutrinos

High rate in detector: large interaction rate \rightarrow high absorption

- Downward/horizontal
- Use $\nu_{ au}$:
 - gain volume
 - lose energy

Flavour composition important

High Energy Neutrinos

- seeing very high energy neutrinos: **ESSENTIAL** \rightarrow soon!
- counting very high energy neutrinos: first step
- need more! \rightarrow more work!
 - angular distributions
 - energy distributions
 - flavour composition
 - better detector techniques
 - smart tricks, unique signatures, etc.
 - very good simulations
 - correlations with other observables: photons, protons, etc.
- find right observable and combination of observables
- can distinguish particle physics from astrophysics effects
- learn about both!

Deep Core Array

- motivation: galactic sources, dark matter annihilation
- need to reduce large cosmic muon background
- dense phototube coverage region
- in the deep ceter region of IceCube
- low energy threshold

Atmospheric Neutinos

- background to many IceCube searches
- Lots of them!

Three flavors neutrino oscillations

$$\begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

$$\Delta m_{21}^2 = \Delta m_{sol}^2, \quad \Delta m_{32}^2 = \Delta m_{atm}^2$$

$$\theta_{12} = \theta_{sol}, \theta_{13} = \theta_{reactor}, \theta_{23} = \theta_{atm}, \delta$$

We want to measure:

- θ_{13}
- hierarchy (sign of Δm_{atm}^2)
- CP violation (δ)

large effort to build new accelerator experiments for this purpose use matter effetcs

Neutrino Oscillations in IceCube

 $\boldsymbol{\mu}$ like fully contained events

Angular distribution:

- $\cos \theta \in (0, 1)$ atmosperic flux normalization
- $\cos \theta \in (-0.9, 0)$ + main oscillation signal ($\Delta m_{32}^2, \theta_{23}$)
- $\cos \theta \in (-1, -0.9)$ + matter effects (θ_{13} , hierarchy, CP)

Energy distribution:

- $E \leq 40 \text{GeV}$: neutrino oscillations
- 50 GeV \leq E \leq 5 TeV atmospheric neutrino flux
- $E \ge 10$ TeV: Earth density profile

• χ^2 fit to discriminate between normal and inverted hierarchy

Normal versus inverted hierarchy: O. Mena, I. M., S. Razzaque

Lots to learn from:

- astrophysical neutrinos
- long baseline experiments

In the meantime:

use atmospheric neutrinos in IceCube to determine

neutrino oscillation parameters!