CONSTRAINTS ON LIGHT DARK MATTER FROM CDMS II

Jodi Cooley Southern Methodist University on behalf of the CDMS Collaboration

THE CDMS & SUPERCOMS COLLABORATIONS

California Institute of Technology

Z. Ahmed, J. Filippini, S.R. Golwala, D. Moore, R.W. Ogburn

Case Western Reserve University

D. Akerib, C.N. Bailey, M.R. Dragowski, R. Hennings-Yeomans

Fermi National Accelerator Laboratory

D. A. Bauer, F. DeJongh, J. Hall, D. Holmgren, L. Hsu, E. Ramberg, R.L. Schmitt, R.B. Thakur, J. Yoo

Massachusetts Institute of Technology

A. Anderson, E. Figueroa-Feliciano, S. Hertel, S.W. Leman, K.A. McCarthy, P. Wikus

NIST

K. Irwin

Queen's University

P. Di Stefano, C. Crewdson, O. Kamaev, J. Fox, S. Liu, C. Martinez, P. Nadeau, W. Rau, Y. Ricci, M. Verdier

Santa Clara University

B. A. Young

Southern Methodist University

J. Cooley, B. Karabuga, H. Qiu, S. Scorza

SLAC/KIPAC

M. Asai, A. Borgland, D. Brandt, P.L. Brink, W. Craddock, E. do Couto e Silva, G.Godfrey, J.Hasi, M. Kelsey, C. Kenney, P.C. Kim, R. Partridge, R. Resch, A. Tomada, D. Wright

Stanford University

B. Cabrera, M. Cherry, R. Moffat, L. Novak, M. Pyle, M. Razeti, B. Shank, S. Yellin, J. Yen

Syracuse University M. Kos, M. Kiveni, R. W. Schnee

Texas A&M A. Jastram, K. Koch, R. Mahapatra, M. Platt, K. Prasad, J. Sander

University of California, Berkeley

M. Daal, T. Doughty, N. Mirabolfathi, A. Phipps, B. Sadoulet, D. Seitz, B. Serfass, D. Speller, K.M. Sundqvist

University of California, Santa Barbara R. Bunker, D.O. Caldwell, H. Nelson

University of Colorado Denver B.A. Hines, M.E. Huber

University of Florida T. Saab, D. Balakishiyeva, B. Welliver

University of Minnesota

J. Beaty, H.Chagani, P. Cushman, S. Fallows, M. Fritts, V. Mandic, X. Qiu, A. Reisetter, J. Zhang

University of Zurich S. Arrenberg, T. Bruch, L. Baudis, M. Tarka

THE BIG PICTURE

Use a combination of **discrimination** and **shielding** to maintain a **"<I event expected background"** experiment with **low temperature** semiconductor detectors

Discrimination from measurements of ionization and phonon energy.

Ephonon

Keep backgrounds low as possible through shielding and material selection.

3

LOW MASS WIMPS

- RESULTS FROM DAMA/LIBRA AND COGENT HAVE BEEN INTERPRETED AS WIMPS with $m_{\chi} \sim 7$ GeV and $\sigma_{sI} \sim 1 \times 10^{-40}$ cm².
- POSSIBLY COMPATIBLE WITH CDMS (SI) AND XENON RESULTS DUE TO CALIBRATION UNCERTAINTIES AT LOW ENERGY.

CAN CDMS SAY ANYTHING ABOUT LOW MASS WIMPS?

• We can lower the analysis threshold at cost of higher backgrounds.

LOW MASS WIMPS

- Lower threshold (2 keV), increases sensitivity to WIMPs with mass below ~10 GeV/c²
- Used 8 Ge detectors with the lowest detector thresholds (1.5 2.5 keV)
- Data taken from Oct. 2006 Sept.
 2008 (241 kg-days "raw" exposure)
- A small subset (1/4) of data was used to study backgrounds at low energies
 - Results were dominated by detector with best resolution (T1Z5)
- Measure both ionization and phonons to discriminate against low-energy electron recoil backgrounds

CALIBRATION OF ENERGY SCALES

NUCLEAR RECOIL SELECTION

- Nuclear recoil acceptance region is defined as (+1.25, -0.5) σ band in ionization energy using neutron calibration data.
 - Maximize sensitivity to nuclear recoils while minimizing backgrounds.

NUCLEAR RECOIL SELECTION

- Nuclear recoil acceptance region is defined as (+1.25, -0.5) σ band in ionization energy using neutron calibration data.
 - Maximize sensitivity to nuclear recoils while minimizing backgrounds.

LOW MASS RESULTS

arXiv: 1011.2482

 Assumed that all events could be WIMPs (no ^{10⁻³⁹} background subtraction

• Limits set using the Y of Optimum Interval Met g 10-40

S. Yellin, PRD, 66, 032005 (2002); arXiv:0709.2701v1 (2007)

 90% CL limits are incompatible with DAA LIBRA and CoGeNT for spin-independent elastic scattering.

WIMP

ELECTRON RECOL BACKGROUNDS

- Observed candidates can be explained by extrapolations of background estimates.
 - Possible significant systematic errors due to extrapolations to low energy.
- We do not subtract off these backgrounds when setting limits.

ZERO CHARGE EVENTS

- Dominant expected background below 10 keV.
- Consistent with electron recoils where charge is collected on the sides of the cylindrical surfaces
- Pass fiducial volume selection (guard signal consistent with noise)
- Zero charge events scale with electron-recoil rate, not exposure
- Exponential spectrum above
 ~5 keV extrapolated to lower energies.

COMPARISON TO COGENT

- CoGeNT and CDMS II use the same target material (Ge)
- Both experiments see an exponential spectrum above threshold.
- Rate in CDMS for best detector is inconsistent with low mass WIMP explanation for CoGeNT excess.
- No background subtraction!

SUPERCDMS @SOUDAN

- Approved to deploy 5 towers of of advanced iZIP detectors (~10 kg Ge) in the existing cryostat at the Soudan Underground Laboratory.
- Analysis of data from commissioning run of the first tower of iZIP detectors is underway.
- Fabrication of remaining iZIP detectors expected to be completed this summer.
- Start of operation -- 2011.

IZIP DETECTORS

- 2.5 cm thick interleaved ZIP (iZIP) double sided detectors
 - (2.5x thicker than CDMS II)
- Charge electrodes are interleaved with narrow strips of phonon sensors.
 - Phonon sensors optimized to enhance phonon signal to noise ratio
- Optimized sensor layout
 - Each side has one outer channel used to define the fiducial volume of the detector and 3 inner channels to reject surface events.
- Charge channels can be used to reject surface events

IZIP DETECTORS

Phonon sensor layout:

- 2.5 cm thick interleaved ZIP (iZIP) double sided detectors
 - (2.5x thicker than CDMS II)
- Charge electrodes are interleaved with narrow strips of phonon sensors.
 - Phonon sensors optimized to enhance phonon signal to noise ratio
- Optimized sensor layout
 - Each side has one outer channel used to define the fiducial volume of the detector and 3 inner channels to reject surface events.
- Charge channels can be used to reject surface events

III R

XXIII RENCONTRES DE BLOIS

IZIP CHARGE DISCRIMINATION

- 1:10⁴ surface event discrimination from ionization signal asymmetry
- Still have discrimination from ionization yield and pulse shape

SUMMARY

- The CDMS II data has been reanalyzed with a lower
 2 keV recoil energy threshold.
- The lower threshold introduces significant background into the analysis.
- Even without background subtraction, results from this analysis are incompatible with an interpretation of DAMA/LIBRA and CoGeNT in terms of spinindependent elastic scatters of low mass WIMPs.
- SuperCDMS at Soudan is expected to start operations later this year utilizing new iZIP detectors.

BACK-UP SLIDES

BACKGROUND REJECTION: YIELD

- Ionization yield (ionization energy per unit phonon energy) depends strongly on particle type.
- Most backgrounds produce elecron recoils
- Wimps and neutrons produce nuclear recoils
- Excellent yield-based discrimination for electron recoils:
 - < 10⁻⁴ mis-id probability

RESCALING RECOIL ENERGY

- The recoil energy scale would need to be off by 15% for coadded detectors or 60% in our best detector for good agreement with CoGeNT (7 GeV/c² WIMP).
- Energy scale already assumes most conservative values consistent with 1.3 keV activation recoil line at 90% CL.

COMPARISON TO SUF DATA

• Similar analysis using SUF data has been published

Akerib et al. PRD 82 122004 (2010) arXiv:1010.4290

- Spectra agrees well at high energies.
- Primary difference at low energies are due to nuclearrecoil band cut and less activation of 1.3 keV line

NLICLEAR RECOL ENERGY SCALE

- Energy scale assumes "drift heat" consistent with phonons produced by drifting ionization from a nuclear recoil.
- Electron recoils are pushed to higher recoil energies and lower yields due to the larger drift heat contribution.
- 1.3 keV electron recoil activation line is pushed partially above the 2 keV threshold.

LIMIT SETTING PROCEDURE

- Limits are set using optimal interval method ordered by detector.
- Allows choice of most constraining energy interval on lowest background detector (applies statistical penalty for freedom of interval choice.
- Background limited, so most constraining choice contains events from a signal detector.
- Limit procedure and ordering set prior to opening data to avoid bias.

