SUSY searches in ATLAS

David Côté (CERN) for the ATLAS Collaboration 23^{ème} Rencontres de Blois

Christopher Colombus in 1492, searching for the Indies...

Contents

- ATLAS detector and data-taking – today's results based on 2010 data
- SUSY phenomenology
- Overview of all SUSY searches in ATLAS
 - emphasis on experimental results & methods
 - few words on model-dependent interpretation
- Conclusions

The ATLAS detector

ATLAS data in 2010

- Proton-proton collisions at 7 TeV
- Good-quality data used for analysis: ~35 pb⁻¹

SUSY phenomenology

- if R-parity is conserved
 - Lightest Supersymmetric Particle (LSP) is stable
 - large missing transverse energy (MET)
 - _____dark matter candidate
- if \tilde{q} or \tilde{g} masses are not very large
 - dominant production via strong force at LHC
 - decay chain to LSP (possibly long)
 - multiple jets
 - can have leptons and/or photons
 - » popular model: CMSSM/MSUGRA
- if 3rd generation is lighter (to stabilize Higgs mass)
 - enhanced b-jet production
- if R-parity is not conserved
 - resonance from decay of the LSP
- if decay of NLSP to LSP is suppressed
 - meta-stable heavy particles
 - slow muon-like particles
 - slow R-hadrons

statistically independent

Overview of SUSY searches in ATLAS

combination

(most sensitive

search if CMSSM)

- MET + jets + 0 lepton
- MET + jets + 1 lepton
- MET + 2 leptons
- MET + \geq 3 leptons
- MET + 2 photons NEW!
- MET + b-jet + 0/1 lepton
- e+µ resonance
- slow colored hadron
- slow muon-like particle NEW!

Sensitive to a wide range of hypothetical new physics, not only to SUSY.

Data 2010 (vs = 7 TeV)

SM Total

Z+jets

ATLAS

QCD multijet W+jets

tt and single top SM + SUSY reference poi

2000

2500

m_{eff} [GeV]

3000

MET + jets + 0 lepton $m_{Eff} \equiv \sum p_T^{jet} + E_T^{miss}$

Entries / 100 GeV

104

10²

10

10

2.5 1.5 L dt ~ 35 pb⁻¹

1000

1500

10³ Signal regions C & D

(≥ 3 jets)

Event selection: (also include lepton veto)

Fo	our signal regions:	Α	В	С	D
ion	Number of required jets	≥ 2	≥ 2	≥ 3	≥ 3
lecti	Leading jet pT [GeV]	> 120	> 120	> 120	> 120
e-se	Other jet(s) pT [GeV]	> 40	> 40	> 40	> 40
Æ	$E_{\rm T}^{\rm miss}$ [GeV]	> 100	> 100	> 100	> 100
tion	$\Delta \phi$ (jet, $\vec{P}_{\rm T}^{\rm miss}$) _{min}	> 0.4	> 0.4	> 0.4	> 0.4
elec	$E_{\rm T}^{\rm miss}/m_{\rm eff}$	> 0.3	-	> 0.25	> 0.25
al s	$m_{\rm eff}$ [GeV]	> 500	_	> 500	> 1000
Fir	m_{T2} [GeV]	-	> 300	_	_

QCD bkg from data control sample

<u>Kesults</u>							
Signal Region	А	В	С	D			
observed:	87	11	66	2			
expected:	118 ⁺⁴² -36	10.0 ^{+6.0} -4.8	88 ⁺³³ -27	2.5 ^{+1.4} _{-1.1}			
W/Z+jets top QCD	102 10 7	8.5 0.9 0.6	62 17 9	1.9 0.3 0.2			
σ·Β·ε·Α:	< 1.3 pb	< 0.35 pb	< 1.1 pb	< 0.11 pb			

D. Côté - SUSY searches in ATLAS - Blois2011

MET + jets + 0 lepton (details)

MET distribution after the \geq 2 jets pre-selections. Its excellent performance and data/MC agreement is typical for all the MET-based searches.

ArXiV:1102.5290

MET + 1 lepton

First SUSY result of ATLAS

Event selection

• exactly one lepton, p_T > 20 GeV

Channel

observed:

expected:

top W/Z

QCD

 $\sigma \cdot B \cdot \epsilon \cdot A$:

- ≥3 jets, p_T > 60, 30, 30 GeV
- m_T > 100 GeV
- MET > 125 GeV
- MET/M_{Eff} > 0.25
- $M_{Eff} > 500 \text{ GeV}$

< 0.073 pb

D. Côté - SUSY searches in ATLAS - Blois2011

< 0.065 pb

Phys. Rev. Lett. 106, 131802 (2011) "Viewpoint" Physics 4, 27 (2011)

MET + 1 lepton (details)

- 3 control regions (CR), for: QCD, W, Top
- extra regions (XR) to validate quality of background model
- Simultaneous fit of QCD, W, Top and signal in all CR+SR \rightarrow normalization from data, shape from MC
- QCD in SR from data-driven loose-to-tight matrix method

0+1 lepton combination

- Exclude M_{gluino} = M_{squark} < 815 GeV for tan β =3, A₀=0, μ >0
- More stringent limits than previous ones from Tevatron and LEP
- Sensitivity is dominated by 0-lepton, except at low $m_{1/2}$
- PCL statistical method (arXiv:1105.3166)

ArXiV:1103.6208, accepted by EPJCL ArXiV:1103.6214, submitted to EPJCL

MET + 2 leptons

MET + multi-leptons

Event selection:

- \geq 3 leptons, p_T > 20 (10) GeV
- \geq 2 jets, p_T > 50 GeV
- MET > 50 GeV

Main background:

top quark decays

<u>Number of events with 3 leptons (no jet nor MET cut)*</u>								
Multilep. events All eee eeµ					μμμ] [
tī	0.68±0.16	0.032±0.016	0.24±0.07	0.31±0.08	0.096 ± 0.030			
Z backgrounds	15.6±1.3	3.8±0.8	1.60 ± 0.34	7.9±1.0	2.4±0.4			
Other backgrounds	0.28±0.13	0.02±0.14	0.03 ± 0.06	0.21±0.09	0.01±0.11			
Total SM	16.6±1.3	3.8±0.8	1.9±0.4	8.4±1.0	2.5±0.4] [
Data	19	2	1	10	6			

*no observed events with four leptons

Data 2010 ($\sqrt{s} = 7 \text{ TeV}$)

 $GGM m_{\tilde{a}} = 600 \text{ GeV},$

UED 1/R = 900 GeV

 $W \rightarrow ev + iets. W \rightarrow ev\gamma. t\bar{t} \rightarrow ev + \lambda$

m_~ = 300 GeV

ATLAS Preliminary

 $Ldt = 36 \text{ pb}^{-1}$

QCD

MET + di-photon

Entries / 5 Ge/

10²

10

10⁻¹

Event selection:

- \geq 2 photons, E_T > 30, 20 GeV
- MET > 125 GeV

Backgrounds (data-driven):

- QCD from loose photon-ID control sample
- W and top from e-photon control sample

D. Côté - SUSY searches in ATLAS - Blois2011

800

250

ArXiV:1103.4344 Submitted to PLB

15

MET + b-jet + 0/1 lepton

Common event selection:

- MET > 100 GeV
- ≥1 b-jet(s)

0-lepton selection:

- lepton veto
- \geq 3 jets, p_T > 120, 30, 30 GeV
- M_{Eff} > 600 GeV
- MET/M_{Eff} > 0.2

<u>1-lepton selection:</u>

- \geq 1 lepton, p_T > 20 GeV
- \geq 2 jets, p_T > 60, 30 GeV
- m_T > 100 GeV
- M_{Eff} > 500 GeV

Background estimation:

- QCD from data control sample
- W, Z, Top :
- \rightarrow from simulation (0-lepton)
- \rightarrow from data-driven m_T νs m_{Eff} "ABCD" method (1-lepton)

D. Côté - SUSY searches in ATLAS - Blois2011

ArXiV:1103.5559 Accepted by PRL

e+mu resonance

Event selection:

- exactly 1 e and 1 μ of opposite charge
- electron and muon pT > 20 GeV

Background estimate:

- instrumental bkg from data-driven loose-to-tight matrix method
- $Z \rightarrow \tau \tau$, top and other SM bkgs from MC

N. I. C
Number of events
54 ± 7
57 ± 9
13.4 ± 1.7
4.6 ± 0.9
0.79 ± 0.11
33^{+30}_{-10}
163^{+34}_{-18}
160

- no resonance is observed
- model-dependent exclusion of $m\tilde{\nu}_{\tau}$ < 0.75 GeV given RPV couplings λ'_{311} = 0.11 and λ_{312} = 0.07

(a) ArXiV:1103.1984, accepted by PLB (b) NEW! slow meta-stable particles

Event selection:

- large dE/dx in Pixel detector
- long time-of-flight (TOF) in Tile calorimeter (a,b)
- long TOF in Muon Spectrometers (MS) (b)

Main background: instrumental

<u>Analysis steps:</u> 1) count events with slow particles

2) derive particle's mass \mathcal{M}_{dE}

$$M_{TOF} = \frac{p}{\beta\gamma} = \frac{pc}{\gamma} \cdot \frac{TOF}{dist}$$
$$\frac{p_1}{p_1} \ln(1 + (p_0 \beta_2))^{p_5}) = n(1 + p_0 \beta_2)^{p_5}$$

(a)

ass
$$\mathcal{M}_{\frac{\mathrm{d}E}{\mathrm{d}x}}(\beta) = \frac{P_1}{\beta p_3} \ln(1 + (p_2 \beta \gamma)^{p_5}) - p_4$$

<u>Results</u>

Events from MS search (b)					
mass cut	$N_{expected}$	N _{obs}			
90	19.2	16			
110	9.8	8			
130	5.4	4			

D. Côté - SUSY searches in ATLAS - Blois2011

Conclusions

- 9 searches have been presented
 - all based on 2010 data
 - no signs of new physics yet
 - SUSY is still largely possible
 - surpassed Tevatron's sensitivity
- We expect ~100x more data in 2011
 - very exciting prospects for discovery!
 - stay tuned for new public results soon

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults

...and again, we are sensitive to a wide range of hypothetical new physics, not only SUSY. We may well end up discovering...

D. Côté - SUSY searches in ATLAS - Blois2011

Christopher Columbus

...and again, we are sensitive to a wide range of hypothetical new physics, not only SUSY. We may well end up discovering...

... THE UNEXPECTED!!!

Map of the Americas drawn in 1545

World map drawn in 1490 by Bartolomeo and Christopher Columbus

backup material

Definitions

all MET searches:
$$m_{\!E\!f\!f}\equiv \sum p_T^{\,jet}+E_T^{miss}+\!\left(p_T^\ell
ight)$$

1-lepton:
$$m_T \equiv \sqrt{2p_T^{\ell}E_T^{miss}(1-\cos(\Delta\phi(\ell,E_T^{miss})))}$$

2-lepton:
$$S = \frac{N(e^{\pm}e^{\mp})}{\beta(1-(1-\tau_e)^2)} - \frac{N(e^{\pm}\mu^{\mp})}{1-(1-\tau_e)(1-\tau_{\mu})} + \frac{\beta N(\mu^{\pm}\mu^{\mp})}{(1-(1-\tau_{\mu})^2)}$$

 β is ratio of e, μ ID efficiencies, τ_{e} and τ_{μ} are trigger efficiencies.

0-lepton:
$$m_{T2}(\vec{p}_T^{(1)}, \vec{p}_T^{(2)}, \vec{p}_T) \equiv \min_{\vec{q}_T^{(1)} + \vec{q}_T^{(2)} = E_T^{miss}} \{ \max(m_T(\vec{p}_T^{(1)}, \vec{q}_T^{(1)}), m_T(\vec{p}_T^{(2)}, \vec{q}_T^{(2)})) \}$$

SUSY cross-sections

LHC x-sections for dominant SUSY processes are more than 150 times higher

Define R-parity = $(-1)^{3(B-L)+25}$

- R = 1 for SM particles
- R = -1 for MSSM partners

D. Côté - SUSY searches in ATLAS - Blois2011

ATLAS data in 2010

D. Côté - SUSY searches in ATLAS - Blois2011

Peak Luminosity (10³¹ cm² s°)

200 150

100

Peak luminosity per day

D. Côté - SUSY searches in ATLAS - Blois2011

MET + jets + 0 lepton

<u>Results</u>

	Signal region A	Signal region B	Signal region C	Signal region D
QCD	7 ⁺⁸ ₋₇ [u+j]	$0.6 ^{+0.7}_{-0.6}[u+j]$	9 ⁺¹⁰ [u+j]	$0.2 ^{+0.4}_{-0.2}[u+j]$
W+jets	$50 \pm 11[u] {}^{+14}_{-10}[j] \pm 5[\mathcal{L}]$	$4.4 \pm 3.2[u] {}^{+1.5}_{-0.8}[j] \pm 0.5[\mathcal{L}]$	$35 \pm 9[u] {}^{+10}_{-8}[j] \pm 4[\mathcal{L}]$	$1.1 \pm 0.7[u] {}^{+0.2}_{-0.3}[j] \pm 0.1[\mathcal{L}]$
Z+jets	$52 \pm 21[u] {}^{+15}_{-11}[j] \pm 6[\mathcal{L}]$	$4.1 \pm 2.9[u] {}^{+2.1}_{-0.8}[j] \pm 0.5[\mathcal{L}]$	$27 \pm 12[u] {}^{+10}_{-6}[j] \pm 3[\mathcal{L}]$	$0.8 \pm 0.7[u] {}^{+0.6}_{-0.0}[j] \pm 0.1[\mathcal{L}]$
$t\bar{t}$ and t	$10 \pm 0[u] + {}^{3}_{-2}[j] \pm 1[\mathcal{L}]$	$0.9 \pm 0.1[u] {}^{+0.4}_{-0.3}[j] \pm 0.1[\mathcal{L}]$	$17 \pm 1[u] + {}^{6}_{-4}[j] \pm 2[\mathcal{L}]$	$0.3 \pm 0.1[u] {}^{+0.2}_{-0.1}[j] \pm 0.0[\mathcal{L}]$
Total SM	$118 \pm 25[u] {}^{+32}_{-23}[j] \pm 12[\mathcal{L}]$	$10.0 \pm 4.3[u] {}^{+4.0}_{-1.9}[j] \pm 1.0[\mathcal{L}]$	$88 \pm 18[u] {}^{+26}_{-18}[j] \pm 9[\mathcal{L}]$	$2.5 \pm 1.0[u] {}^{+1.0}_{-0.4}[j] \pm 0.2[\mathcal{L}]$
Data	87	11	66	2
σ·ε·Α	< 1.3 pb	< 0.35 pb	< 1.1 pb	< 0.11 pb

MET + jets + 0 lepton

• Events with $\Delta \phi_{min}$ (jet,MET) < 0.4 constitute the QCD control sample

• Events with $\Delta \phi_{min}$ (jet,MET) > 0.4 are considered for the final signal selections

ArXiV:1102.5290 Submitted to PLB

MET + jets + 0 lepton

Signal Region (SR: A, B, C or D) used for each signal Grid point to derive the exclusion curves. The decision of which SR to use was made a priori, based on MC expectations.

Re-interpretation of 0/1-lepton searches

One possible way to do it:

- 1) reproduce the ATLAS analysis cuts with your "local" simulation of the ATLAS detector
- 2) validate your local setup against published ATLAS efficiencies for benchmark CMSSM points
- 3) use your validated setup to predict the expected signal yields for your favorite model

[,] (600 Ge

600

q̃ (800 GeV)

800

1000

m_o [GeV]

These "power-constrained" limits (PCL) address the issue that motivated the widely used CLs procedure, but do so in a way that makes more transparent the properties of the statistical test to which each value of the parameter is subjected. (arXiv:1105.3166)

ã (400 GeV)

400

200

 $\tilde{\chi}_{1}^{0}$ (LSP

ArXiV:1103.6208, accepted by EPJCL

MET + 2 leptons (details)

Flavor subtraction of opposite-sign events

- Main background: top-quark decays
 control sample: 60<MET<80 GeV
- overflow event is likely a cosmic ray

	Events used	for flavor	subtraction	(MET >	100 GeV)
--	--------------------	------------	-------------	--------	----------

	$e^{\pm}e^{\mp}$	$e^{\pm}\mu^{\mp}$	$\mu^{\pm}\mu^{\mp}$
Data	4	13	13
Z/γ^* +jets	$0.40{\pm}0.46$	$0.36{\pm}0.20$	$0.91{\pm}0.67$
Dibosons	$0.30 {\pm} 0.11$	$0.36{\pm}0.10$	$0.61 {\pm} 0.10$
$tar{t}$	$2.50{\pm}1.02$	$6.61 {\pm} 2.68$	$4.71 {\pm} 1.91$
Single top	$0.13 {\pm} 0.09$	$0.76 {\pm} 0.25$	$0.67 {\pm} 0.33$
Fakes	$0.31 {\pm} 0.21$	-0.15 ± 0.08	$0.01 {\pm} 0.01$
Total SM	3.64 ± 1.24	8.08 ± 2.78	$6.91{\pm}2.20$

ArXiV:1103.6208, accepted by EPJCL ArXiV:1103.6214, submitted to EPJCL

MET + 2 leptons

Results: $S_{obs} = 1.98 \pm 0.15_{\beta} \pm 0.06_{\tau}$ ($S_{exp} = 2.06 \pm 1.1$)

	Same Sign, E	$T_T^{miss} > 100 \text{ GeV}$			Opposite Sign,	$E_T^{miss} > 150 \text{ GeV}$	V
	$e^\pm e^\pm$	$e^{\pm}\mu^{\pm}$	$\mu^{\pm}\mu^{\pm}$		e^+e^-	$e^{\pm}\mu^{\mp}$	$\mu^+\mu^-$
Data	0	0	0	Data	1	4	4
Fakes	0.12 ± 0.13	0.030 ± 0.026	0.014 ± 0.010	$tar{t}$	$0.62^{+0.31}_{-0.28}$	$1.24^{+0.62}_{-0.56}$	$1.00\substack{+0.50\\-0.45}$
Di-bosons	0.015 ± 0.005	0.035 ± 0.012	0.021 ± 0.009	Z+jets	0.19 ± 0.15	0.08 ± 0.08	0.14 ± 0.17
Charge-flip	0.019 ± 0.008	0.026 ± 0.011	-	Fakes	-0.02 ± 0.02	-0.05 ± 0.04	-
Cosmics	-	$0^{+1.17}_{-0}$	-	Cosmics	-	-0.2 ± 1.18	-0.43 ± 1.27
Total	0.15 ± 0.13	$0.09 {}^{+1.17}_{-0.03}$	0.04 ± 0.01	Total	$0.92^{+0.42}_{-0.40}$	$1.43^{+1.45}_{-0.59}$	$1.39^{+1.41}_{-0.53}$
σ·ε·Α	< 0.07 pb	< 0.07 pb	< 0.07 pb	σ·ε·Α	< 0.09 pb	< 0.22 pb	< 0.21 pb

slow meta-stable particles

1000

Exploit lack of correlation between mass measurements

