

Searches for - non-SUSY - new physics at ATLAS

Tülay Çuhadar Dönszelmann University of Sheffield (On behalf of the ATLAS collaboration) 23rd Rencontres de Blois

Introduction

- Within the SM itself and based on calculations on SM:
 - Naturalness problem: Mass of yet-to-be-discovered Higgs boson Higgs? SUSY?
 - CP violation in SM not enough: Why more matter than antimatter?
 Does CKM triangle close? New flavor?
- Completely absent from SM:
 - No unification of the 3 forces

Technicolor? E6?

Also where is gravity?

Extra dimensions?

Why three families?

4th generation?

Arbitrary "input" parameters. Why is m_d>m_u? Why m_e<m_n-m_p?
 [See talk on Monday by Rohini Godbole – "Review of SUSY and Extra Dimensions"]

Outline

Di-jet resonance

- ttbar resonance
- Leptoquarks
- Fourth generation quarks
- New Heavy bosons
- Contact interaction

Randall-Sundrum Graviton

23rd Rencontres de Blois

arxiv:1103.3864 J. Phys. 13 (2011) 053044

New physics in di-jet events

- These '2 → 2' scattering processes are well described within SM
 - sensitive to new phenomena
- Observables :
 - Di-jet invariant mass
 - Di-jet angular distributions of energetic jets relative to the beam axis
- Events with two highest p_T jets recoiling back to back with rapidities, y₁ and y₂

$$y^{*} = \frac{1}{2} \ln \left(\frac{1 + |\cos \vartheta^{*}|}{1 - |\cos \vartheta^{*}|} \right) = \frac{1}{2} (y_{1} - y_{2})$$

No evidence for a bump using : $\chi^2 \text{ test} \Rightarrow \text{p-value } 0.88$ BumpHunter (Phys. Rev. D79: 011101) Set exclusion limits

23rd Rencontres de Blois

Di-jet angular distribution

- Average of $y_1 \& y_2$, $|y_B| < 1.10$ and $|y^*| < 1.70 \implies \chi \sim 30$

 Fraction of di-jets produced centrally versus total number of di-jets :

$$F_{\chi}\left(\left[m_{jj}^{\min} + m_{jj}^{\max}\right]/2\right) = \frac{N_{events}\left(|y^{*}| < 0.6, m_{jj}^{\min}, m_{jj}^{\max}\right)}{N_{events}\left(|y^{*}| < 1.7, m_{jj}^{\min}, m_{jj}^{\max}\right)}$$

23rd Rencontres de Blois

Di-jet Results

95% C.L. Limits (TeV)

Observable	Expected	Observed					
Exited quark q*							
m _{jj}	2.07	2.15					
$F_{\chi}(m_{jj})$	2.12	2.64					
Randall-Meade quantum black hole for n=6							
m _{jj}	3.64	3.67					
$F_{\chi}(m_{jj})$	3.49	3.78					
Axigluon							
m _{jj}	2.01	2.10					
Contact interaction Λ							
$F_{\chi}(m_{jj})$	5.72	9.51					

23rd Rencontres de Blois

01/06/2011

ttbar Resonances

- Signature : (At least one W reconstructed leptonically):
 - High p_T isolated lepton (e, μ), at least four jets and large missing energy
- Observable :
 - Invariant mass of ttbar computed from the reconstructed objects in the final state
 - Objects are not assigned to either of the t (i.e. no t reconstruction)
- Two methods to reconstruct ttbar: 4 hardest jets four highest p_T jets

and dRmin method - as "4 hardest jet", removes jet if $\Delta R(j,l) > 2.5-0.015 \times m_j$

Limits on ttbar Resonances

- The observed cross section limits on σ×Br(Z' → ttbar) ranges from 55 pb at M = 500 GeV to 2.2 pb at M=1000 GeV
- Exclude M_{QBH} < 2400 GeV @ 95% C.L.

Leptoquarks searches

arxiv:1104.4481 accepted by PRD

- Leptoquarks particles that carry both lepton and baryon quantum numbers
- Many models predict leptoquarks
 - Quark and lepton sub-structure
 - Theories seek GUT
 - Extended technicolor

Leptoquark production from qqbar annihilation or gluon fusion (hep-ph/9808413v1)

 LQ search - LQ pair production e/µ for 1st/2nd LQ generation through *lljj* and *lvjj*

$$\sigma(pp \rightarrow lljj) \equiv \sigma_{LQ} \times \beta^{2}$$

$$\sigma(pp \rightarrow lvjj) \equiv \sigma_{LQ} \times 2\beta(1-\beta)$$

$$\beta \equiv Br(LQ \rightarrow l+X)$$

Leptoquarks searches

- Observables:
 - For *lljj*: Transverse energy in the event or for *lvjj*: Transverse mass

$$S_{T}^{l} = p_{T}^{l_{1}} + p_{T}^{l_{2}} + p_{T}^{j_{1}} + p_{T}^{j_{2}}$$
$$M_{LQ}^{T} = \sqrt{2p_{T}^{j}E_{T}^{miss}(1 - \cos\phi^{j})}$$

Backgrounds :

10

llij: Z+jet and ttbar and *lvjj*: W+jets and ttbar

23rd Rencontres de Blois

Limits on Leptoquarks

Ist generation

95% C.L. Lower limit on LQ (Modified frequentist method)

Туре (β)	Expected limit (GeV)	Observed limit (GeV)		
1 st generation (1.0)	387	376		
l st generation (0.5)	348	319		
2 nd generation (1.0)	393	422		
2 nd generation (0.5)	353	362		

The most stringent results to date

23rd Rencontres de Blois

ATLAS-CONF-2011-022

Fourth generation quarks

- Fourth generation is not excluded with the EW fit
- Pair production of Q₄
 - Ws decay leptonically $Q_4 \overline{Q}_4 \rightarrow W^+ q W^- q$ q=u,d,c,s or b
- Discriminating variables : H_T and M_{Q4} (assignments of

particles that makes Q₄ mass difference minimum)

H_T > X-Y×M_{coll} remove significant background while sacrificing a small fraction of events

m_{Q4} > 270 GeV/c² @ 95% C.L.

(95% C.L limits by CDF m_{d4} > 372 GeV and m_{u4} > 356 GeV)

23rd Rencontres de Blois

Introduction for new heavy bosons

- Many models predict additional new heavy gauge bosons beyond SM (W'^(*),Z'^(*))
- Sequential Standard Model (SSM)
 - Same coupling to fermions as SM
 - Width increases linearly with W'/Z' mass
- GUT E6 inspired Z'
 - Different model leads to specific Z' states : $Z'_{\psi}, Z'_{N}, Z'_{\eta}, Z'_{I}, Z'_{S}, Z'_{\chi}$
- New Chiral boson spin 1 bosons W*, Z*
 - Excited bosons
 - Different couplings to fermions (magnetic moment type)
- Previous lower
 Limits [TeV]

	W'	Ζ'
CDF	1.12	1.071
D0	1.0	1.023
CMS	1.58	1.14

(Differential cross section for Z' and Z* at 800GeV < $M_{\ell\ell}$ < 1200 GeV)

Signature : High p_T isolated lepton (e,μ) and large missing energy

- Observable :
 - Transverse mass

$$m_T = \sqrt{2p_T E_T^{miss} (1 - \cos\varphi_{lv})}$$

- Backgrounds
 - W → ℓv (irreducible) Drell-Yan, ttbar, di-boson QCD multi-jet, Cosmic rays (from data)
- Signal W' (PYTHIA), W* (CompHep using CTEQ6L1)

arxiv:1103.1391 Accepted by PLB

01/06/2011

|4

Results on W' and W* e/μ combined result for W'

e/μ combined result for W*

- No evidence for an excess found
- Lower limits on W' and W* are set at 95% C.L.
 - $m_{W'}$ > 1490 GeV and m_{W^*} >1350 GeV (the most stringent to date)

Di-lepton resonances

- Signature: Opposite charge, same flavor di-lepton ($e^+e^-/\mu^+\mu^-$)
- Observable : invariant mass of di-lepton
- Backgrounds: Z/ $\gamma^{\star}\,$ (Drell-Yan), QCD , ttbar, di-boson (WW/WZ and ZZ), W+jets
- Signals : Z' (PYTHIA), Z* (CompHEP using CTEQ6L1)

p-values for electron and muon are 5% and 22% - no statistically significant excess above the SM

Results on Z' and Z*

- No evidence for resonance found
- The e⁺e⁻/μ⁺μ⁻ combined mass limits @95 C.L.
 M_{Z'} (SSM) > 1.048 TeV
 M_{Z*} > 1.152 TeV (first limit on Z* mass)

E6	Ζ' ψ	Z' _N	Ζ'η	Z' 1	Z's	Ζ'χ
Mass limit (TeV)	0.738	0.763	0.771	0.842	0.871	0.900

 $(Z'_{S} and Z'_{I} are the more stringent than previous results)$

Contact Interactions in di-muon events submitted to PRD

- CI model introduces hypothetical constituents of quarks and leptons that are bound together by a energy scale Λ

$$L = \frac{g}{2\Lambda^2} [\eta_{LL} \overline{\psi}_L \gamma_\mu \psi_L \overline{\psi}_L \gamma^\mu \psi_L + \eta_{RR} \overline{\psi}_R \gamma_\mu \psi_R \overline{\psi}_R \gamma^\mu \psi_R + 2\eta_{LR} \overline{\psi}_L \gamma_\mu \psi_L \overline{\psi}_R \gamma^\mu \psi_R]$$

g²/4 π =1 and η_{LL} , η_{LR} , η_{RR} =±1

- To estimate level of agreement data and MC
 - SM only pseudo experiments generated
 - Deviation from the SM quantified

- Use the same event selection as in heavy resonance searches
 - Signal broad deviation from SM not a peak
 - 95% C.L. Λ^- >4.9 TeV Λ^+ > 4.5 TeV

ATLAS-CONF-2011-044 Randall-Sundrum Graviton in di-photon

 RS introduces an extra spatial dimension to resolve hierarchy problem :

- The only propagator : Gravitons and Graviton excitation (Kaluza-Klein tower)
- Search for $G \rightarrow \gamma \gamma$ (G could also decay to pairs of fermions or bosons)

No evidence for narrow resonance (p-value, BumpHunter shows agreement between data and background only hypothesis)
 m_G > 545 (920) GeV for coupling k/M_{Pl} = 0.02 (0.1) @ 95 C.L.
 (m_G limits for coupling 0.01 and 0.1 by D0 : 560 and 1050 GeV CDF : 459 and 963 GeV)
 23rd Rencontres de Blois

Conclusions

- With the very successful LHC run in 2010, 45 pb⁻¹ data were collected at 7 TeV
- Many BSM scenarios studied
 - No deviations from the SM found so far
- We were able to set limits (some of the world's best limits) at TeV scale

2011 data taking is going very well and we are already exploring new regions ..

BACKUP

ttbar : Limits with "4-hardest jet"

Di-electron candidate (Z' search)

Highest invariant mass di-electron event with 617 GeV:

The highest momentum electron

p_T = 279 GeV η = 1.22 φ = 1.74

The trailing electron $p_T = 276 \text{ GeV}$ $\eta = 0.28$ $\phi = -1.40$

