Beyond MSSM: Higgs cascade decays

Adam Falkowski LPT Orsay

Blois, le 01 juin 2011

Adam Falkowski LPT Orsay Beyond MSSM: Higgs cascade decays

- In the SM Higgs decays most readily to the pair of the heaviest kinematically available particles
- In the presence of new physics this can be dramatically altered
- MSSM and its extensions contain a lot of new particles that could mess with the Higgs sector
- Many possibilities: enhanced decays to 2τ , invisible decays etc.
- One new dramatic possibility: cascade decays to many-body final states via new intermediate particles

Models

A selection (far from complete!) of SUSY models with cascade Higgs decay

- 4 H → 4b, 4τ in NMSSM, Dermisek, Gunion [hep-ph/0502105, hep-ph/0611142]
- 4 H → 6*j* in R-parity violating MSSM Carpenter, Kaplan, Rhee [hep-ph/0607204]
- ↓ *H* → 4*g* (Buried Higgs) in SUSY Little Higgs Bellazzini,Csaki,AA,Weiler [0906.3026]
- ↓ *H* → 4*c* (Charming Higgs) in SUSY Little Higgs Bellazzini,Csaki,AA,Weiler [0910.0345]
- ↓ *H* → lepton jets in MSSM+light hidden sector AA,Ruderman,Volansky,Zupan [1002.2952]

Decay Channel	Exp.	Limit
$h \rightarrow AA \rightarrow 4b$	LEP, hep-ex/0602042	110 GeV
h ightarrow AA ightarrow 4 au	ALEPH, 1003.0705	$\sim 110~{ m GeV}$
$h ightarrow AA ightarrow 4\mu, 2\mu 2 au$	D0, 0905.3381	-
$h ightarrow AA ightarrow 4\mu, 4e$	RECAST, 1010.2506	$\sim 115{ m GeV}$
h ightarrow AA ightarrow 4c, 4g	OPAL, hep-ex/0209068	86 GeV
h ightarrow anything	OPAL, hep-ex/0206022	82 GeV

see Chang, Dermisek, Gunion, Weiner [0801.4554] for review

- Most searches for Higgs cascade decays are pretty recent
- In some case mass limits are weak because the channel did not receive enough attention

Buried Higgs

Case study: $H \rightarrow 4g$, Bellazzini, Csaki, AA, Weiler [0906.3026]

- $\bullet\,$ Higgs dominantly decays to a pair of pseudoscalars A with $m_A < 10\,\,{\rm GeV}$
- A has sizable Yukawa couplings to the third generation quarks and tiny coupling to light quarks and to leptons
- For $m_A > 10$ GeV it dominantly decays to 2 b-quarks (not considered here)
- For $m_A < 10$ GeV it dominantly decays via loop of off-shell bottom quark to 2 gluons
- In effect, the leading Higgs decay is the cascade $h \rightarrow AA \rightarrow 4g$

• In this model the branching into standard LHC discovery final states like $h \rightarrow \gamma \gamma \ h \rightarrow bb$ or $h \rightarrow \tau \tau$ is strongly suppressed

- Because $m_A \ll m_h$, A is boosted, and the 2 gluons from its decay will merge into 1 jet
- $\bullet\,$ The signature of buried Higgs is 2 jets of low invariant mass $\sim m_A \stackrel{\scriptstyle <}{_{\sim}} 10$ GeV
- At the LHC, it semes hopeless at first sight:
 - Gluon fusion $gg \rightarrow h$ completely swamped by dijet background
 - VBF channels suffers because of the central jet veto
 - The associated production *Vh* or *tth* more promising, but the backgrounds from *V* + *jets* and *tt* + *jets* are many orders of magnitude larger than the signal
- Nevertheless...

jet substructure may save the day! Chen et al [1006.1151] , AA,Krohn,Shelton,Thallapillil,Wang [1006.1650]

AA,Krohn,Shelton,Thallapillil,Wang [1006.1650] looks at the following 2 channels

- Higgstrahlung: W + h
 - At LHC 14 TeV, $\sigma_{Wh} \sim$ 3 pb for $m_h \sim$ 100 GeV
 - Look at leptonic W boson decays
 - Main background: W+jets, $\sigma_W \sim 200 \text{ nb}$
- Associated production with top quarks: tth
 - At LHC 14 TeV, $\sigma_{tth} \sim 1$ pb, for $m_h \sim 100$ GeV.
 - Look at dileptonic tops
 - Final state: 2 leptons (e or μ), 2 tagged b-jets, and at least 2 ordinary jets
 - Main background: tt+jets, $\sigma_{tt+jets} \sim 1000$ pb, $S/B \sim 1/1000$
 - Note: contrary to the SM case no pesky combinatorics!
 - Other backgrounds like ttZ, Zbb are by far subdominant

Assume SM production cross section and 100 percent branching fraction into 4 gluons (caution: both can be suppressed in specific models). Assume $m_A < 10$ GeV so the two gluons to which A decays merge into 1 jet, see Kaplan,McEvoy [1102.0704] for the large m_A case

- LHC is a very jetty place, and brute force kinematic cuts are not enough
- Concentrate on the kinematic regime where Higgs is boosted, $p_T(h) \gtrsim 150$ GeV, so that 2 jets from Higgs decay are approximately collimated and appear as one fat jet in the detector
- Then study the jet substructure, to identify the characteristic kinematics and color flow of buried Higgs. It turns out for QCD it is not easy to fake that substructure
- Jet substructure tools successfully earlier applied for the SM Higgs in the $W(H \rightarrow b\bar{b})$ channel Butterworth et al [0802.2470] and $t\bar{t}h$ channel, Plehn et al [0910.5472].

- Signal and background are generated with MadGraph pipelined to Pythia 6.4 and Slowjet
- ISR, showering, pile-up and underlying event included
- 3 signal samples: $m_h = 80, 100, 120$, and $m_A = 8$ GeV
- The $t\bar{t}$ +jets background is matched using MadGraphs native kT-MLM procedure
- \bullet Jet clustering is done in FastJet and SlowJet using the anti-kT scheme (similar results with C/A)
- Results robust under changing model of parton shower (Pythia virtuality-ordered) and choice of matching scheme (shower-kT)

This talk: ttH channel only (similar techniques and final signal significance in Wh channel). For each generated signal and background event

- Cluster all particles into jets of size R = 0.4 using the anti-kT algorithm
- Preselection of the dileptonic top sample: events with 2 identified opposite sign leptons + 2 identified b-jets
- Drop leptons and identified b-jets and further cluster remaining untagged jets into fat jets of size R = 1.5.
- Trim the fat jets to remove contamination from unrelated soft activity
- $\bullet\,$ Select the hardest fat jet with at least 2 subjets and cut $p_{T}\gtrsim130\,\,\text{GeV}$
- Find 2 hardest subjets, and cut on their $p_T \gtrsim 40$ GeV

Substructure variables

- Signal has 2 subjets with the same and low invariant mass
- QCD radiation favors mass hierarchy and sligthly larger jet masses (after pT cuts)

Mean invariant mass:

$$\overline{m} = \frac{m(j_1) + m(j_2)}{2}$$

Mass democracy:

 $\alpha_{sub} = \operatorname{Min}(m(j_1)/m(j_2), m(j_2)/m(j_1))$

Background (Blue) \times 1, Signal(Red) \times 100

 $\bullet\,$ Signal is color singlet until pseudoscalar decay at \sim 10 GeV: expect less radiation between jets

$$\beta_{sub} = \frac{p_T(j_3)}{p_T(j_1) + p_T(j_2)}$$

 $NJ(j, p_{th}) =$ Number of subjets with $p_T > p_{th}$ inside the hardest fat jet

Background (Blue) \times 1, Signal(Red) \times 100

- Cut on mass democracy $\alpha_{sub} \gtrsim$ 0.7 on color flow $\beta_{sub} \lesssim$ 0.03,
- After all cuts, signal displays a clear peak in the invariant mass of the fat jet, while background sharply drops at high masses

Background (black) Signal + Background (purple $m_h = 80$ GeV, red $m_h = 100$ GeV, orange $m_h = 120$ GeV)

Bump Hunting

Similar significance in the W+h channel, with a larger cross section after cuts but worse S/B

Significance, assuming 100 fb-1 as $\sqrt{s} = 14$ TeV

		$m_h = 80 \mathrm{GeV}$	$m_h = 100 { m GeV}$	$m_h = 120{ m GeV}$
pp ightarrow hW	S/\sqrt{B}	6.6	7.8	7.0
	S/B	0.34	0.90	0.80
$pp ightarrow ht \overline{t}$	S/\sqrt{B}	6.1	6.1	7.1
	S/B	1.1	1.3	2.5

- Higgs may turn out to be standard and boring, but it may well be a vicious beast
- © Each case study usually leads to developing new collider tools and tightens our nets
- © With the help from methods of jet substructure a light Higgs boson decaying via a cascade $h \rightarrow AA \rightarrow 4g$ into 2 light jets can be discovered at the LHC with sufficiently large integrated luminosity