Chiral anomalies in superfluid hydrodynamics

Yasha Neiman
YN, Yaron Oz - work in progress
"Particle Physics and Cosmology", Blois
June 1, 2011

Hydrodynamics

- Description of matter in local equilibrium. Focuses on conserved currents - $T^{\mu \nu}, J_{a}^{\mu}$.
- Constitutive relations - formulas for $T^{\mu \nu}$ and J_{a}^{μ} in terms of basic variables u^{μ}, T, μ_{a}.
- Gradient expansion.

Zeroth order - ideal fluid. First order - transport terms.

Hydrodynamics

- Description of matter in local equilibrium. Focuses on conserved currents - $T^{\mu \nu}, J_{a}^{\mu}$.
- Constitutive relations - formulas for $T^{\mu \nu}$ and J_{a}^{μ} in terms of basic variables $u^{\mu}, T, \mu_{\mathrm{a}}$.
- Gradient expansion.

Zeroth order - ideal fluid. First order - transport terms.
Examples of transport terms

- Shear viscosity $-T_{\pi}^{\mu \nu}=-2 \eta \pi^{\mu \nu}$.
- Conductivity - $J_{E}^{a \mu}=\sigma^{a b}\left(E_{b}^{\mu}-T \nabla^{\mu} \frac{\mu_{b}}{T}\right)$

Hydrodynamics

- Description of matter in local equilibrium. Focuses on conserved currents - $T^{\mu \nu}, J_{a}^{\mu}$.
- Constitutive relations - formulas for $T^{\mu \nu}$ and J_{a}^{μ} in terms of basic variables u^{μ}, T, μ_{a}.
- Gradient expansion.

Zeroth order - ideal fluid. First order - transport terms.
Examples of transport terms

- Shear viscosity $-T_{\pi}^{\mu \nu}=-2 \eta \pi^{\mu \nu}$.
- Conductivity $-J_{E}^{a \mu}=\sigma^{a b}\left(E_{b}^{\mu}-T \nabla^{\mu} \frac{\mu_{b}}{T}\right)$

Two approaches for finding transport terms

- Second law of thermodynamics $-\nabla_{\mu} s^{\mu} \geq 0$.
- Kubo formulas - 2-point correlators in thermal QFT.

Hydrodynamics and QFT

Field theory allows new features for currents

- Chirality $-\epsilon^{\mu \nu \rho \sigma}$.
- Anomalies - $\nabla_{\mu} J_{a}^{\mu} \neq 0$.
- Spontaneously broken currents - superfluidity.
- (Non-abelian currents.)

Hydrodynamics and QFT

Field theory allows new features for currents

- Chirality $-\epsilon^{\mu \nu \rho \sigma}$.
- Anomalies - $\nabla_{\mu} J_{a}^{\mu} \neq 0$.
- Spontaneously broken currents - superfluidity.
- (Non-abelian currents.)

Relevance

- Nuclear and QCD fluids - neutron stars, early universe, heavy ion collisions...
- Condensed-matter shenanigans (probably not for anomalies).

Hydrodynamics and QFT

Field theory allows new features for currents

- Chirality $-\epsilon^{\mu \nu \rho \sigma}$.
- Anomalies - $\nabla_{\mu} J_{a}^{\mu} \neq 0$.
- Spontaneously broken currents - superfluidity.
- (Non-abelian currents.)

Relevance

- Nuclear and QCD fluids - neutron stars, early universe, heavy ion collisions...
- Condensed-matter shenanigans (probably not for anomalies).

Task:

- Find the transport terms that follow from these new possibilities.

Anomalies in normal fluid

Son,Surowka 0906.5044, YN,Oz 1011.5107, Amado et.al. 1102.4577
Chiral magnetic effect
$J_{B}^{a \mu}=B_{b}^{\mu}\left(C^{a b c} \mu_{c}-\frac{n^{a}}{\epsilon+p} \frac{1}{2} C^{b d c} \mu_{c} \mu_{d}\right)$
Chiral vortical effect $J_{\omega}^{a \mu}=\omega^{\mu}\left(C^{a b c} \mu_{b} \mu_{c}-\frac{n^{a}}{\epsilon+p} \frac{2}{3} C^{b c d} \mu_{b} \mu_{c} \mu_{d}\right)$
$C_{a b c}-J J J$ anomaly coefficient. Omitted the terms from JTT anomaly.

Anomalies in normal fluid

Son,Surowka 0906.5044, YN,Oz 1011.5107, Amado et.al. 1102.4577
Chiral magnetic effect
$J_{B}^{a \mu}=B_{b}^{\mu}\left(C^{a b c} \mu_{c}-\frac{n^{a}}{\epsilon+p} \frac{1}{2} C^{b d c} \mu_{c} \mu_{d}\right)$
Chiral vortical effect
$J_{\omega}^{a \mu}=\omega^{\mu}\left(C^{a b c} \mu_{b} \mu_{c}-\frac{n^{a}}{\epsilon+p} \frac{2}{3} C^{b c d} \mu_{b} \mu_{c} \mu_{d}\right)$
$C_{a b c}-J J J$ anomaly coefficient. Omitted the terms from JTT anomaly. Kubo formulas

- $J_{B, \omega}^{a \mu}=j^{a \mu}-\frac{n^{a}}{\epsilon+p} j^{\mu}$
- $j^{a \mu}$ and $j^{\prime \mu}$ - combinations of QFT correlators $\langle J J\rangle,\langle J T\rangle,\langle T T\rangle$.

Anomalies in normal fluid

Son,Surowka 0906.5044, YN,Oz 1011.5107, Amado et.al. 1102.4577
Chiral magnetic effect
$J_{B}^{a \mu}=B_{b}^{\mu}\left(C^{a b c} \mu_{c}-\frac{n^{a}}{\epsilon+p} \frac{1}{2} C^{b d c} \mu_{c} \mu_{d}\right)$
Chiral vortical effect
$J_{\omega}^{a \mu}=\omega^{\mu}\left(C^{a b c} \mu_{b} \mu_{c}-\frac{n^{a}}{\epsilon+p} \frac{2}{3} C^{b c d} \mu_{b} \mu_{c} \mu_{d}\right)$
$C_{a b c}-J J J$ anomaly coefficient. Omitted the terms from JTT anomaly. Kubo formulas

- $J_{B, \omega}^{a \mu}=j^{a \mu}-\frac{n^{a}}{\epsilon+p} j^{\prime \mu}$
- $j^{a \mu}$ and j^{μ} - combinations of QFT correlators $\langle J J\rangle,\langle J T\rangle,\langle T T\rangle$.

Nice structure emerges

- $\partial j^{a \mu} / \partial \mu_{b}=C^{a b c}\left(B_{c}^{\mu}+2 \mu_{c} \omega^{\mu}\right)$
- $\partial j^{\prime \mu} / \partial \mu_{a}=C^{a b c} \mu_{b}\left(B_{c}^{\mu}+2 \mu_{c} \omega^{\mu}\right)$

Superfluid hydrodynamics

Framework

- Spontaneously broken symmetry.
- Additional variable - the vacuum phase gradient ξ_{μ}^{a}.
- Josephson condition - $\xi_{\mu}^{a} u^{\mu}=\mu^{a}+$ corrections.

Superfluid hydrodynamics

Framework

- Spontaneously broken symmetry.
- Additional variable - the vacuum phase gradient ξ_{μ}^{a}.
- Josephson condition - $\xi_{\mu}^{a} u^{\mu}=\mu^{a}+$ corrections.

Transport terms in collinear limit, $\xi_{\mu}^{a} \sim u_{\mu}$

- Known since Landau.

Superfluid hydrodynamics

Framework

- Spontaneously broken symmetry.
- Additional variable - the vacuum phase gradient ξ_{μ}^{a}.
- Josephson condition - $\xi_{\mu}^{a} u^{\mu}=\mu^{a}+$ corrections.

Transport terms in collinear limit, $\xi_{\mu}^{a} \sim u_{\mu}$

- Known since Landau.

Transport terms in general case

- Work in progress, spurred by holography.

New chiral terms in superfluids

Bhattachary(y)a,Minwalla,Yarom 1105.3733
Results from second-law constraints

- Corrections to $T^{\mu \nu}, J_{a}^{\mu}$ and to the Josephson condition.
- The corrections involve $\epsilon^{\mu \nu \rho \sigma} u_{\nu} \xi_{\rho}$ - vanish in collinear limit.
- Proportional to $\pi_{\mu \nu}$ or to $E_{\sigma}^{a}-T \nabla_{\sigma} \frac{\mu_{a}}{T}$.
- Also, some unspeakable things.

New chiral terms in superfluids

Bhattachary(y)a,Minwalla,Yarom 1105.3733
Results from second-law constraints

- Corrections to $T^{\mu \nu}, J_{a}^{\mu}$ and to the Josephson condition.
- The corrections involve $\epsilon^{\mu \nu \rho \sigma} u_{\nu} \xi_{\rho}$ - vanish in collinear limit.
- Proportional to $\pi_{\mu \nu}$ or to $E_{\sigma}^{a}-T \nabla_{\sigma} \frac{\mu_{a}}{T}$.
- Also, some unspeakable things.

In particular - Chiral Electric Conductivity
$J_{E}^{a \mu}=\chi^{a b c} \epsilon^{\mu \nu \rho \sigma} u_{\nu} \xi_{\rho}^{c}\left(E_{\sigma}^{b}-T \nabla_{\sigma} \frac{\mu_{b}}{T}\right) ; ~ \chi_{a b c}=\chi_{b a c}$

Identifying the anomaly in the new terms

Educated guess: $J_{E}^{a \mu}$ arises from the $J J J$ anomaly
Precise form of the coefficient strongly hinted at by the existing results:

$$
J_{E}^{a \mu}=C^{c d e}\left(\delta_{d}^{a}-\frac{n^{2} \mu_{d}}{h}\right)\left(\delta_{e}^{b}-\frac{n^{b} \mu_{e}}{h}\right) \epsilon^{\mu \nu \rho \sigma} u_{\nu} \xi_{\rho}^{c}\left(E_{\sigma}^{b}-T \nabla_{\sigma} \frac{\mu_{b}}{T}\right)
$$

Identifying the anomaly in the new terms

Educated guess: $J_{E}^{\mu \mu}$ arises from the $J J J$ anomaly
Precise form of the coefficient strongly hinted at by the existing results:
$J_{E}^{a \mu}=C^{c d e}\left(\delta_{d}^{a}-\frac{n^{2} \mu_{d}}{h}\right)\left(\delta_{e}^{b}-\frac{n^{b} \mu_{e}}{h}\right) \epsilon^{\mu \nu \rho \sigma} u_{\nu} \xi_{\rho}^{c}\left(E_{\sigma}^{b}-T \nabla_{\sigma} \frac{\mu_{b}}{T}\right)$
Structural components of the guess

- Upgrade $\mu^{a} u_{\mu}$ in the anomalous normal-fluid result to ξ_{μ}^{a}.
- $B_{a}^{\mu}+2 \mu_{a} \omega^{\mu}$ and $E_{\mu}^{a}-\nabla_{\mu} \mu^{a}-\mu^{a} a_{\mu} \approx\left(\delta_{b}^{a}-\frac{\mu^{a} n_{b}}{h}\right)\left(E_{\mu}^{b}-T \nabla_{\mu} \frac{\mu^{b}}{T}\right)$ are the magnetic and electric fields for the gauge potential $A_{\mu}^{a}+\mu^{a} u_{\mu}$.

Further directions

- Test the guess for the Chiral Electric coefficient $\chi_{a b c}$ with a Kubo-formula calculation.

Further directions

- Test the guess for the Chiral Electric coefficient $\chi_{a b c}$ with a Kubo-formula calculation.
- Experimental relevance - Neutron stars, CFL?

Further directions

- Test the guess for the Chiral Electric coefficient $\chi_{a b c}$ with a Kubo-formula calculation.
- Experimental relevance - Neutron stars, CFL?
- Understand superfluids with multiple, or non-abelian, broken symmetries.

Further directions

- Test the guess for the Chiral Electric coefficient $\chi_{a b c}$ with a Kubo-formula calculation.
- Experimental relevance - Neutron stars, CFL?
- Understand superfluids with multiple, or non-abelian, broken symmetries.

