COMPOSITE TOP, MODELS AND IMPLICATIONS AT HADRON COLLIDERS

Javi Serra (Univ. Autònoma Barcelona & CERN)

WHYTHETOP? Experimental "evidence"

WHYTHETOP? Experimental "evidence"

WHYTHETOP? Experimental "evidence"

Composite Top: $y_{R,L} = 4\pi$

WHYTHETOP? Theoretical motivations, 1:

composite-NGB Higgs and EWSB

WHYTHETOP? Theoretical motivations, 1:

composite-NGB Higgs and EWSB

Top responsible for EWSB

WHYTHETOP? Theoretical motivations, 1:

composite-NGB Higgs and EWSB

Kaplan, Georgi, '84

Top responsible for EWSB

$$m_h \sim \sqrt{N_c} y_t v$$

WHYTHETOP? Theoretical motivations, 2:

strong dynamics and EWPT's

WHYTHETOP? Theoretical motivations, 2:

strong dynamics and EWPT's

WHYTHETOP? Theoretical motivations, 2:

strong dynamics and EWPT's

Top and partners come to help

Pomarol, JS, '08

WHYTHETOP? Theoretical motivations, 3: composite unification

WHYTHETOP? Theoretical motivations, 3: composite unification

SM – h – t_R + partners

WHYTHETOP? Theoretical motivations, 3: composite unification

top compositeness allows precise unification

WHAT IF THE TOP IS COMPOSITE ? an effective Lagrangian approach

compo t_R :

$$ic_R \frac{(4\pi)^2}{\Lambda^2} (H^{\dagger} D_{\mu} H) (\bar{t}_R \gamma^{\mu} t_R) + c_{4t} \frac{(4\pi)^2}{\Lambda^2} (\bar{t}_R \gamma_{\mu} t_R) (\bar{t}_R \gamma^{\mu} t_R)$$

compo $q_L = (t_L, b_L)$:

$$ic_{L}^{(1)}\frac{(4\pi)^{2}}{\Lambda^{2}}(H^{\dagger}D_{\mu}H)(\bar{q}_{L}\gamma^{\mu}q_{L}) + ic_{L}^{(3)}\frac{(4\pi)^{2}}{2\Lambda^{2}}(H^{\dagger}\sigma^{i}D_{\mu}H)(\bar{q}_{L}\sigma^{i}\gamma^{\mu}q_{L}) + c_{4q}\frac{(4\pi)^{2}}{\Lambda^{2}}(\bar{q}_{L}\gamma_{\mu}q_{L})(\bar{q}_{L}\gamma^{\mu}q_{L})$$

due to
$$P_{LR}$$
: $c_L^{(3)} \simeq -c_L^{(1)}$ $c_i = \mathcal{O}(1)$
 $\Lambda \sim 4\pi f$

subleading:

$$c_M \frac{y_t}{16\pi^2} \frac{(4\pi)^2}{\Lambda^2} \bar{q}_L G_{\mu\nu} \tilde{H} \sigma_{\mu\nu} t_R + \dots$$

model independent implications

WHAT IF THE TOP IS COMPOSITE?

Modification of top – gauge bosons couplings

f = 500 GeV no strong present (direct) contraints

WHAT IF THE TOP IS COMPOSITE?

strong 4-top production

WHAT IF THE TOP IS COMPOSITE ?

strong 4-top production

2 tops (t_1) very energetic ($p_T(t_1) > p_T(t_2)$) strong cuts are needed to reduce backgrounds

several "detector level" analyses:

$$l^{\pm}l^{\pm}jj$$
Kumar, Tait, Vega-Morales, '09
 $l^{\pm}jjE_{T}^{miss}$

Jung, Wells, '10

WHAT IF THE TOP IS COMPOSITE?

Top-partners direct detection

model-dependent

EXAMPLE: $T_{5/3}$ (Q = 5/3)

golden channel $l^{\pm}l^{\pm} + n \, jets + E_T^{miss}$

both single and double production

Contino, Servant, '08 Mrazek, Wulzer, '09 Dissertori, Furlan, Moortgat, Nef, '09

early LHC physics

WHAT IF THE TOP IS COMPOSITE ?

Top forward-backward asymmetry

Right-handed composite top + partial compositeness of light quarks

Effective Lagrangian approach:

$$c_{RL}^{(8)} \frac{4\pi g_L^{(8)}}{\Lambda^2} (\bar{t}_R \gamma_\mu T^a t_R) (\bar{q}_L \gamma^\mu T^a q_L) + c_{RR}^{(8)} \frac{4\pi g_R^{(8)}}{\Lambda^2} (\bar{t}_R \gamma_\mu T^a t_R) (\bar{u}_R \gamma^\mu T^a u_R) (\bar{u}_R \gamma^\mu u_R)$$

WHAT IF THE TOP IS COMPOSITE ?

Top forward-backward asymmetry

Right-handed composite top + partial compositeness of light quarks

CONCLUSIONS

The top quark is the most sensitive fermion to the strong sector responsible for EWSB and SM masses.

Top quark compositeness has a lot to offer

Look for it at the LHC !

- * Anomalous couplings
- * Strong 4-top production
- * Top partners
- * Top asymmetries