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the per mille level. This bound has strongly disfavored in the past Technicolor models and other

variants [11]. From the lagrangian of Eq. (11), we find a deviation from the SM ZbLb̄L coupling

given by
δgbL

gbL

=
(c(1)

L + c(3)
L )ξ

1− 2
3 sin2 θW

. (18)

For c(1),(3)
L ∼ 1, as expected for a composite qL, Eq. (18) gives a large deviation, excluded by the

present LEP data. This strong bound, however, can be evaded in certain custodial BSM models. As

pointed out in Ref. [7], the custodial symmetry implemented with PLR (that interchanges L ↔ R)

can protect Zbb̄ from large deviations from its SM value. This occurs when the BSM field that

couples to bL has the following isospin-left and isospin-right charge assignments [7]:

TL = TR = 1/2 , T 3
L = T 3

R = −1/2 . (19)

In this case one finds, from integrating out the BSM sector, c(1)
L = −c(3)

L , and therefore no contribu-

tions to Eq. (18) are generated. The only effect on Zbb̄ will arise from loops involving SM particles

(together with BSM states) that do not respect the custodial and PLR symmetry. We will comment

on these effects later on.

Assuming that Eq. (19) is fulfilled, and that the operator Q̄LΣTR must be allowed to give masses

to the SM fermions, we are left with only two possible charge assignments for the states Q and T

under SU(2)L×SU(2)R×U(1)X
2:

Q T
Case (a) (2,2)2/3 (1,1)2/3

Case (b) (2,2)2/3 (1,3)2/3 + (3,1)2/3

(20)

In this article we will concentrate only on these two possibilities.

4.1 The T̂ parameter

With Zbb̄ under control at tree-level, the next important observable is the T -parameter. The

contribution to T arises from the higher-dimensional operator

cT

2f 2
|H†DµH|2 , T̂ = cT ξ , (21)

where we follow the notation of Ref. [12] in which the T -parameter is rescaled: T̂ = αT % T/129.

As we previously said, T̂ is zero at the tree-level by the custodial symmetry. Nevertheless, it can

2The extra global U(1)X symmetry of the BSM sector is needed to properly embed the hypercharge of the SM,
Y = T 3

R + X.

7
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What if the Top is Composite ?

an effective Lagrangian approach
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can be larger than those to T̂ for the case (a). For example, for c4q ∼ −1/6, cL ∼ −0.2, ξ ∼ 1/4, and

Mρ ∼ 2.3 TeV, Mq∗ ∼ 800 GeV, the contributions to T̂ are below the experimental bound but we

find δgbL/gbL ∼ 0.013 that is larger than the experimental constraint −0.002 ! δgbL/gbL ! 0.006.

These sizable contributions to Zbb̄, however, scale with c4qcL ∝ (yL/gρ)6, while those to T̂ are

proportional to c2
L ∝ (yL/gρ)4; therefore the contributions to Zbb̄ can be parametrically suppressed

with respect to those to T̂ if yL is slightly smaller than gρ. For a composite tR, contributions to Zbb̄

proportional to the custodian mass or logarithmically sensitive to Mρ are not present, and therefore

Fig. 6 will not suffer large modifications.

For very light custodians, the constraints from Zbb̄ can be as important as those from T̂ [15,16].

This implies that the allowed low-Mq∗ regions of Figs. 2 and 6 could be sligthly reduced by the Zbb̄

constraints. We leave this calculation for a future publication.

5 Phenomenological implications at future colliders

In this section we want to study the experimental implications of having one of the top chiralities

being a composite state. For this purpose, the effective lagrangian of section 3 gives a useful model-

independent parametrization of the composite-top new interactions. We will not consider physics

involving the Higgs that has been already studied in Ref. [5], and we will only concentrate on top

physics.

5.1 Anomalous couplings

The coefficients c(1),(3)
L and cR give rise to new contributions to the top coupling to the SM gauge

bosons. In particular, for the ZtLt̄L, WtLb̄L and ZtRt̄R couplings, we have respectively

δgZtLtL

gZtLtL

=
(c(3)

L − c(1)
L )ξ

1− 4
3 sin2 θW

,
δgWtLbL

gWtLbL

= c(3)
L ξ ,

δgZtRtR

gZtRtR

=
3cRξ

4 sin2 θW
. (48)

In the framework considered here we have c(3)
L $ −c(1)

L and cR $ 0, and therefore only deviations

on the tL couplings can be sizable. To observe these deviations is not going to be easy. At the

LHC, top quarks are mostly produced in pairs via the strong gluon fusion process gg → tt̄, decaying

to Wb. To measure the WtLbL coupling, however, a single top must be mostly detected from the

process ub → dt. At the LHC this coupling could be measured with a sensitivity around 7% [17],

implying that one could see deviations if cLξ " 0.07. For the Ztt̄ coupling the situation is more

difficult, since it will not be able to be measured at the LHC. The ILC, however, will be the suitable

machine to unravel the composite nature of the top. Studies show that the top couplings could be

measured with an accuracy as low as 1% [18].
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Modification of top – gauge bosons couplings
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Top-partners direct detection
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Figure 1: Pair production of T5/3 and B to same-sign dilepton final states.

(section 4). Sections 5 and 6 present our main analysis: first, we show the optimal cuts and
characterize the best observables for discovering the heavy T5/3 and B without making any
sophisticated reconstruction; then, we reconstruct the W and t candidates and pair them to
reconstruct the T5/3 invariant mass. We conclude with a critical discussion of our results.

2 A simple model for the top partners

Although the main results of our analysis will be largely independent of the specific real-
ization of the new sector, we will adopt as a working example the “two-site” description of
Ref. [23], which reproduces the low-energy regime of the 5D models of [13, 14] (see also [24]
for an alternative 4D construction). Its two building blocks are the weakly-coupled sec-
tor of the elementary fields qL = (tL, bL) and tR, and a composite sector comprising two
heavy multiplets (2, 2)2/3, (1, 1)2/3 plus the Higgs (the case with partners of the tR in a
[(1, 3) ⊕ (3, 1)]2/3 can be similarly worked out):

Q = (2, 2)2/3 =

[

T T5/3

B T2/3

]

, T̃ = (1, 1)2/3 , H = (2, 2)0 =

[

φ†
0 φ+

−φ− φ0

]

. (1)

The two sectors are linearly coupled through mass mixing terms, resulting in SM and heavy
mass eigenstates that are admixtures of elementary and composite modes. The Higgs dou-
blet couples only to the composite fermions, and its Yukawa interactions to the SM and
heavy eigenstates arise only via their composite component. The Lagrangian in the elemen-
tary/composite basis is (we omit the Higgs potential and kinetic terms and we assume, for
simplicity, the same Yukawa coupling for both left and right composite chiralities):

L =q̄L $∂ qL + t̄R $∂ tR

+ Tr
{

Q̄ ( $∂ − MQ)Q
}

+ ¯̃T ( $∂ − MT̃ ) T̃ + Y∗ Tr{Q̄H} T̃ + h.c

+ ∆L q̄L (T, B) + ∆R t̄RT̃ + h.c.

(2)
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Top forward-backward asymmetry
What if the Top is Composite ?
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atR)(ūRγµT auR)

c
(1)
RL

4πg
(1)
L

Λ2
(t̄RγµtR)(q̄LγµqL) + c

(1)
RR

4πg
(1)
R

Λ2
(t̄RγµtR)(ūRγµuR)
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any significant deviation from the SM predictions. We further discuss the effects of such new
physics on ultra-massive boosted jets at the Tevatron. We then make predictions for the invariant
mass distributions of top pairs soon to be measured at the Tevatron and LHC.

Several works have interpreted the recent CDF measurement of Att̄
450 within specific models of

new physics [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. Similarly, model-independent analyses
were performed [22, 23, 24] and new physics models were invoked [25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39] to explain earlier D0 and CDF measurements of the inclusive asymmetry [5, 6].

We focus on the class of models in which the scale of new physics is well above the scale Mtt̄

relevant to the CDF measurements. The effects of such new physics can then be described from
a low energy model-independent perspective, using the language of effective field theory. Ref. [40]
performed a similar analysis, further assuming that the dominant contribution to the forward-
backward asymmetry comes from interference between the new physics and SM contributions to
top pair production. Denoting the scale of new physics by Λ, Ref. [40] found that in the presence of
an axial octet operator producing a pair of tops from a pair of up quarks at O(1/Λ2) , the observed
tt̄ forward-backward asymmetry can be accounted for. Here we relax the assumption of interference
and consider all operators contributing to tt̄ production up to order 1/Λ4. We provide a simple
formalism that enables one to easily obtain constraints and predictions for models consistent with
our framework. We derive model-independent predictions regarding near future measurements
that will sharply test our general underlying assumptions.

The paper is organized as follows. In Section 2 we review the data relevant to our study.
Section 3 defines the set of operators in our effective Lagrangian. Section 4 relates the operators
to the observables. Our results are presented in Section 5. In Section 6 we discuss predictions for
hard top physics at the Tevatron and LHC. We conclude in Section 7.

2 Relevant Data

In this work we analyze the effect of heavy new physics on the forward-backward asymmetry at
large Mtt̄. Roughly, we aim to account for a new physics contribution of

Att̄
450 = +0.40± 0.11 , (2)

assuming that the rest of the asymmetry in Eq. (1) comes from the SM.
Other top-related measurements do not show significant deviations from the SM predictions.

Consequently, they provide constraints on the parameter space of the effective Lagrangian. The
first such observable is the tt̄ differential cross section, which we choose to represent by the following
large Mtt̄ bin [41]

σ700 ≡ σtt̄(700 GeV < Mtt̄ < 800 GeV) = 80± 37 fb , (3)

as in [40]. This is consistent with the SM prediction [4, 42], σ700 = 80 ± 8 fb. In [40], the
inclusive tt̄ cross section was also used as a constraint. However, the theoretical estimation of
the cross section originating from threshold effects is still under investigation (compare [43, 44, 45]
with [42]). Furthermore, the dynamics of our heavy new physics naturally affects the measurement
at large invariant masses more significantly. Thus in our study we do not use the inclusive tt̄ cross
section to constrain our parameter space. (Note though that our results below are within the
combined theoretical and experimental uncertainties for the inclusive observables.) The same
argument leads us to refrain from considering Att̄ in the low invariant mass region, as well as the
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any significant deviation from the SM predictions. We further discuss the effects of such new
physics on ultra-massive boosted jets at the Tevatron. We then make predictions for the invariant
mass distributions of top pairs soon to be measured at the Tevatron and LHC.
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450 within specific models of

new physics [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. Similarly, model-independent analyses
were performed [22, 23, 24] and new physics models were invoked [25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39] to explain earlier D0 and CDF measurements of the inclusive asymmetry [5, 6].

We focus on the class of models in which the scale of new physics is well above the scale Mtt̄

relevant to the CDF measurements. The effects of such new physics can then be described from
a low energy model-independent perspective, using the language of effective field theory. Ref. [40]
performed a similar analysis, further assuming that the dominant contribution to the forward-
backward asymmetry comes from interference between the new physics and SM contributions to
top pair production. Denoting the scale of new physics by Λ, Ref. [40] found that in the presence of
an axial octet operator producing a pair of tops from a pair of up quarks at O(1/Λ2) , the observed
tt̄ forward-backward asymmetry can be accounted for. Here we relax the assumption of interference
and consider all operators contributing to tt̄ production up to order 1/Λ4. We provide a simple
formalism that enables one to easily obtain constraints and predictions for models consistent with
our framework. We derive model-independent predictions regarding near future measurements
that will sharply test our general underlying assumptions.
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Conclusions

The top quark is the most sensitive fermion to the 
strong sector responsible for EWSB and SM masses.

Top quark compositeness has a lot to offer

Look for it at the LHC !
★ Anomalous couplings
★ Strong 4-top production
★ Top partners
★ Top asymmetries


