

The KM3NeTdeep sea neutrino telescope project

Bruny Baret

Laboratoire AstroParticule et Cosmologie, CNRS/IN2P3 & Université Paris 7

- Neutrino astronomy: why and how
- The KM3NeT project: physics goals & technical constraints
- Technical design & optimization
- Expected performance
- Timeline and perspectives

Neutrino astronomy : motivations

Long-range, deep-source messenger:

no interactions (or weak/gravitational ones) with ambient matter & radiation, no deflection by magnetic fields carry information on the internal processes of the astrophysical engines, unaccessible through photons or hadrons

• Unique probe of fundamental processes:

origin of UHE cosmic rays ? production mechanism of HE gamma-rays (hadronic vs leptonic) ? nature of dark matter ?

Discovery potential for hidden sources (not detected through E-M radiation)

Detection principle

B. Baret

World map of neutrino telescopes

Mediterranean telescopes:

ANTARES (Toulon): 12 lines operating since 2008, ~ 0,015 km³ instrumented volume 2007-2009 data analysis ongoing (5L \rightarrow 12L)

NEMO (Capo Passero, Italy) NESTOR (Pylos, Greece) prototyping phase

Lake Baikal: NT200+ since 2005 since 2008: 2 prototype strings for a km³-scale detector

Ice Cube: 86 strings in 2011 ~ 1 km³ instrumented volume IC59 analysis ongoing

World map of neutrino telescopes

Mediterranean telescopes:

ANTARES (Toulon): 12 lines operating since 2008, ~ 0,015 km³ instrumented volume 2007-2009 data analysis ongoing (5L \rightarrow 12L)

NEMO (Capo Passero, Italy) NESTOR (Pylos, Greece) prototyping phase ANTARES + NEMO + NESTOR joined efforts to build a (few) km³-sized neutrino telescope in the Mediterranean:

KM3NeT consortium

40 Institutes from 10 european countries (CY,DE,F,GR,I,IR,NL,RO,ES,UK) mainly Astroparticle Physics, but also several Marine & Earth Science Institutes

MAIN OBJECTIVES:

Neutrino astronomy in the Southern sky
Exceed IceCube sensitivity by substantial factor
> 10 yr operation without major maintenance
Provide infrastructure for Marine & Earth Sciences

<u>OVERALL BUDGET</u>: ≤ 250 M€

KM3NeT: Physics goals

★ Central physics goal: investigate (extra-)galactic neutrino "point sources" (steady and transients) in the energy regime 1-100 TeV

Exceed IceCube sensitivity: several km³ needed

Complement IceCube field of view

integrated visibility: ~ 3,5 π (visibility of individual sources can be < 100% at KM3NeT latitude)

Optimal sensitivity for Galactic sources

(assuming instantaneous 2π downward coverage)

B. Baret

KM3NeT: Physics goals...and more

Other important physics items:

- ★ High energy diffuse neutrino flux detection
- ★ GZK neutrinos and link with UHE cosmic rays
- Indirect search for Dark Matter
- ★ Neutrino particle physics aspects
- ★ Exotics (Magnetic Monopoles, Lorentz invariance violation, ...)

Interdisciplinary research

B. Baret

ROV Moveable tether

Technical constraints

MAIN GOAL: mechanically support a 3D array of optical sensors and connect them to shore (power, slow control, data transmission)

Site & environmental constraints:

- 3–5 km depth tests at 600 bars

- sea currents flexible structure
- optical background from ⁴⁰K decay local coincidences required
- Implementation:
 - construction time < 5 years
 - reliable & efficient deployment strategy
 - operation over at least 10 years without major maintenance

★ Main performance targets:

- position resolution of optical modules < 40 cm
- single-photon time resolution < 2 ns
- dark noise rate < 20% of ⁴⁰K rate
- optical module failure rate < 10% over 10 years

Technical design

Addressed during the KM3NeT Design Study (DS) (funded by EC FP6 2006-2009) - 2008: Conceptual Design Report (CDR)

- 2010: Technical Design Report (TDR)

outlines the main technological options for the construction, deployment and maintenance of a deep-sea neutrino telescope

see http://www.km3net.org/public.php

Research Infrastructure:

building blocks (BB) made of detection units (DU) made of storeys

Optical modules

Multi-PMT Optical Module

31 small PMTs (3") inside a 17" (~ANTARES) glass sphere

- 31 PMT bases
 - (total \sim 140 mW)
- cooling shield and stem
- single penetrator
- readout electronics inside OM
- total photocathode area equivalent to 3 x 10" PMTs

local coïncidences, directional information

In situ tests on ANTARES Instrumentation Line In summer 2011

Detector units

★ Local 3D arrangement of optical modules help resolve ambiguities in the reconstruction of the muon track

Flexible tower with horizontal bars

20 bars equipped with 2 multi-PMT OMs:

Deployment strategy

★ Requirements:

- compact package
- self-unfurling
- connection to seabed network by remotely operated vehicle (ROV):

Packaged bars: unfurling « «from top to bottom >

successfull deployment test in February 2010:

Optimization studies

★ Critical parameters: size and spacing of the detector units

Bar length

ratio of effective areas wrt. 3 m bar ratio of effective areas wrt. 100 m spacing 10 9 ratio ratio 100 GeV < E_< 500 GeV 100 GeV < E₁ < 500 GeV Low energy region 8 100GeV<E.<500 GeV 0.8 **Quality cuts applied** 6 0.6 5 $\Delta \Omega_{\mu - \mu rec} \sim 2^{\circ}$ (close to the $\Delta \Omega_{un}$) 0.4 3 2 0.2 1 1 0.9 1.4 3 TeV < E_<100 TeV Point like sources 1.3 0.8 3TeV<E_<100 TeV 0.7 **Quality cuts applied** 1.2 0.6 $\Delta \Omega_{\mu-\mu rec} \sim 0.4^{\circ}$ 1.1 0.5 (close to the 0.4 3 TeV < E_u<100 TeV 1 search cone radius) 0.3 E., > 100 TeV 2.75 ation 2.5 E_u > 100 TeV 1.2 Diffuse flux studies 2.25 1.1 1.75 0.9 GRB 1.5 0.8 E_>100 TeV 1.25 0.7 0.6 No quality cuts applied 0.5 0.75 $\Delta \Omega_{\mu-\mu rec} \leq 0.9^{\circ}$ 12 2 10 100 120 140 160 180 200 220 240 260 bar length (m) DU distance (m)

B. Baret

Rencontres Internationales de Blois, 01/06/2011

DU separation

Optimization studies

★ Critical parameters: size and spacing of the detector units

Bar length ratio of effective areas wrt. 3 m bar DU separation ratio of effective areas wrt. 100 m spacing

B. Baret

Optimization studies

* Critical parameters: size and spacing of the detector units

B. Baret

Ecpected preformances

Angular resolution (median of $\Delta\Omega v - \mu$ rec.)

Expected performances

*****Sensitivity to neutrino point sources, flux ~ E^{-2}

1 year operation

★: Galactic Center

Expected performances

★ Expected number of events in 5 years observation time for some Galactic sources: (inside optimized cone)

Source Name	Source radius (°)	Visibility	Number of events For E _v > 5 TeV	
			Signal ν	Atm v
RX J1713.7-3946	0.7	0.74	4-11	6.4
RX J0852.0-4622	1.0	0.84	2 - 6	17
HESS J1745-303	0.2	0.66	0 – 22	1.4
HESS J1626-490	< 0.1	0.91	4 - 9	1.6
Vela X	0.4	0.81	4 - 15	3.5
Crab Nebula	< 0.1	0.39	1-3	0.8

* Expected number of events for 2 very energetic GRBs detected by Fermi:

	GRB	Signal	Background	
~ yearly detection rate with future satellites	GRB080319B	2.6	5 x 10 ⁻⁴	requiring a
	GRB080916C	2.7	5 x 10 ⁻⁴	time coincidence drastically reduces
	100 typical GRB	12	6 x 10 ⁻²	background
	(with reference Waxman-Bahcall flux)			

Candidate sites

★ Locations of the 3 pilot projects:

- ANTARES: Toulon (France)
- NEMO: Capo Passero (Sicily, Italy)
- NESTOR: Pylos (Greece)

Long-term measurements performed for site characterization

★ Main issues for site decision:

- scientific performance
- technological aspects
- (deployment, maintenance)
- funding opportunities
- political convergence

Final decision to be taken by end 2011

Summary and outlook

★ KM3NeT: ~5 km³ neutrino telescope in the Mediterranean, complementing IceCube field of view and substantially surpassing its sensitivity: overall budget needed ~250 M€

* Convergence process towards a unique technical design is underway

* Readiness for construction expected at the end of Preparatory Phase (March 2012)

★ Deployment could start in 2013 and data taking soon after

