The extinction law of Type la Supernovae

The Nearby Supernovae Factory

CHOTARD Nicolas 23rd Rencontres de Blois Ist June 2011

Laboratoire de physique nucléaire et des hautes énergies

mercredi 1 juin 2011

Outlook

Introduction

- *Observational cosmology with SNe Ia 📱
- *The Nearby Supernova Factory

SNe la variability

- *SNe la and extinction law
- *Spectral analysis
- *Empirical extinction law construction

Conclusion

Observational cosmology with SNe la

- * **Hubble diagram :** distance modulus vs. redshift $\mu_B = m_B M_B = 5log(\mathbf{d_L}) 5$
- * **High-z SNe:** expansion and cosmological parameters (in d_L)
- * **Nearby SNe:** constrain the degeneracy between cosmology and SNe Ia luminosity
- * **High quality data** of low redshift SNe la needed to reduce systematics
- * **Optimal redshift** centered around 0.05 : **Hubble flow** (Linder 06)

The Nearby Supernovae Factory

Main Goals

- * Increase the nearby SNe Ia sample (0.03 < z < 0.08)
- * Large sample of flux calibrated spectral time series: control of systematic and standardization
- * SNe la physics:
 - * constrain the models with high quality spectra,
 - * **spectral properties, extinction study**, host analysis,...

Data sample

- * 179 SNe with more than 10 spectra
- * ~3000 spectra from -15 to +40 days / max
- * redshift coverage from 0.01 to 0.1, median is 0.06
- * median first phase: -2
- * mean cadence of observation: ~3 days
- * spectral coverage 3000 9000 Å

SNe la : quasi-standard candles

Homogeneity

- * similar progenitor (white dwarf)
- * similar mass similar luminosity (Chandrasekhar mass)
- * but dispersion around 40% without any correction

Variability

- * Sources of variabilities:
 - * intrinsic:
 - * progenitor composition (metallicity),
 - * progenitor explosion (⁵⁶Ni mass, viewing angle)
 - * **<u>extrinsic</u>**: mainly driven by the host ISM extinction
 - * evolution effects: galaxy properties

Empirical corrections to reduce the dispersion:

* light curve width : ∆m I 5, stretch, x I BRIGHTER - SLOWER
* color: B-V at max, salt2 color BRIGHTER - BLUER

In the SALT2 formalism: $\mu_B = m_B - M_B + \alpha x_1 - \beta c$

dispersion reduced to 0.15 mag

Dust extinction

* Dust in the ISM responsable for an extinction, function of the wavelength

* A **2 parameters law**:

- * dust properties: **R**_v
- * amount of dust: **E(B-V)**

* Cardelli extinction law: High R_v extinction more grey described by: $\left| \frac{A_{\lambda}}{A_{V}} \right| = a_{\lambda} + \frac{b_{\lambda}}{R_{V}}$ 4.00 λ_V 3.0 3.75 3.50 2.5 3.25 with: 2.0 3.00 a_{λ} et b_{λ} , given parameters A_{λ}/A_V 2.75 æ $R_V = \frac{A_V}{E(B-V)}$ 2.50 2.25 1.0 2.00 * Absorption for a given wavelength: 0.5 1.75 $A_{\lambda} = E(B - V) \times (R_V \times a_{\lambda} + b_{\lambda})$ 1.50 3000 4000 5000 6000 7000 8000 9000 10000 Wavelength [Å] Low R_v UV extinction, reddening

Which extinction law for SNe la?

- * SNe la dispersion dominated by extinction variability
- * **Recurrent issue** in SNe la analysis: measurement of the **extinction law (Rv)**
- * Nearby SNe independant from cosmology: direct estimate of the absorption

Difficulty: SNe la variability is a **mix of intrinsic + extrinsic** components **Our Solution** : Measure the **intrinsic variability** with **spectral indicators**

Spectral analysis at max

Spectral analysis at max

Spectral analysis at max

Equivalent widths:

$$EW = \sum_{i=1}^{N} \left(1 - \frac{f_{\lambda}(\lambda_i)}{f_c(\lambda_i)} \right) \Delta \lambda_i$$

- * Insensitive to dust extinction (less than 2%)
- * Correlated to absolute magnitude and stretch
- * Measurement of the **intrinsic** part of the **variability**

Sample: 76 SNe la which have

- * a good phase sampling
- * a spectrum at max (+/- 2.5 days around max)

Measurements (on each spec at max):

- * EWs (Si and Ca)
- * absolute magnitudes (Hubble residuals)

2 set of filters:

9

- * 5 broad synthetic filters (UBVRI-like)
- * 200 narrow synthetic filter («spectral»)

Separating the variabilities

GOAL : Construct a mean extinction law for SNe la

Ist step : Correct the Hubble residuals from intrinsic variabilities to get the relative absorptions δA_{λ} (up to a constant term)

Three cases :

- (a) SNe la are **perfect candles** : only extrinsic variability
- (b) Intrinsic variability described by a *«stretch-like» parameter* : EW^{Si}
- (c) Intrinsic variability described by **two parameters**: EW^{Si} and EW^{Ca}

Construct the extinction law

GOAL : Construct a mean extinction law for SNe la

Ist step : Correct the Hubble residuals from intrinsic variabilities to get the relative absorptions δA_{λ} (up to a constant term) 2nd step : Use the relation between the δA_{λ} to construct the law

Cardelli extinction law

Results on the γ_{λ}

Results on the γ_{λ} 2.0 No correction (1) (a) CCM, $R_V = 2.78$ Perfect candles (×20) $A_\lambda/A_V~(\equiv\gamma_\lambda^0~)$ $s_\lambda^{~Si}$ 1.5 s_{λ}^{Si} [mag/_ 1.0 0.5 EW^{Si} correction 2.0 $s_{\lambda}^{Si} EW_{Si}$ corrected (2) (b) 2 $s_\lambda^{Ca} \; [mag/ m \AA]$ (imes 50) $A_{\lambda}/A_V~(\equiv \gamma_{\lambda}^{ m Si})$ («stretch-like») $s_\lambda^{\ Ca}$ 1.5 **Residual** intrinsic 1.0 variability! 0.5 $s_{\lambda}^{Si} EW_{Si} + s_{\lambda}^{Ca} EW_{Ca}$ corrected (3) 2.0 **C** EW^{Si} and EW^{Ca} $A_{\lambda}/A_V~(\equiv \gamma_{\lambda}^{\rm Si+Ca})$ corrections 1.5 Classic extinction law 1.0 0.5 $R_V = 2.8 \pm 0.4$ CaII SiII SiII SiII 4000 5000 6000 7000 8000 wavelength [Å] Chotard, et al., A&A. (2011)

Results on the γ_{λ} 2.0 No correction (1) (a) CCM, $R_V = 2.78$ Perfect candles (×20) $s_\lambda^{~Si}$ $A_\lambda/A_V~(\equiv\gamma_\lambda^0~)$ 1.5 [mag/1.0 1 ن^ی کړ 0.5 EW^{Si} correction 2.0 $s_{\lambda}^{Si} EW_{Si}$ corrected (2) (b) $s_\lambda^{Ca} \; [mag/ m \AA]$ (imes 50) $A_{\lambda}/A_V~(\equiv \gamma_{\lambda}^{ m Si})$ («stretch-like») $s_\lambda^{\ Ca}$ 1.5 **Residual** intrinsic 1.0 variability! 0.5 (C) 2.0 $s_{\lambda}^{Si} EW_{Si} + s_{\lambda}^{Ca} EW_{Ca}$ corrected (3) $A_{\lambda}/A_V~(\equiv\gamma_{\lambda}^{ m Si+Ca})$ EW^{Si} and EW^{Ca} corrections 1.5 Classic extinction law 1.0 0.5 $R_V = 2.8 \pm 0.4$ SiII CaII SiIISiII

7000

8000

6000

Chotard, et al., A&A. (2011)

4000

5000

wavelength [Å]

Results on the γ_{λ} 2.0 No correction (1) (a) CCM, $R_V = 2.78$ Perfect candles ×20) $s_\lambda^{\,Si}$ 1.5 [mag/1.0 1 is x 0.5 EW^{Si} correction 2.0 $s_{\lambda}^{Si} EW_{Si}$ corrected (2) (b) $s_\lambda^{Ca} \; [mag/ m \AA]$ (imes 50) $s_\lambda^{\ Ca}$ («stretch-like») 1.5 **Residual** intrinsic 1.0 variability! 0.5 (C) $s_{\lambda}^{Si} EW_{Si} + s_{\lambda}^{Ca} EW_{Ca}$ corrected (3) 2.0 EW^{Si} and EW^{Ca} corrections 1.5 Classic extinction law 1.0 0.5 $R_V = 2.8 \pm 0.4$ SiII SiII CaII SiII

7000

8000

6000

5000

wavelength [Å]

4000

Chotard, et al., A&A. (2011)

But need to introduce a dispersion into the fit...

 $A_\lambda/A_V~(\equiv\gamma_\lambda^0~)$

 $A_{\lambda}/A_V~(\equiv \gamma_{\lambda}^{
m Si})$

 $A_{\lambda}/A_V~(\equiv \gamma_{\lambda}^{
m Si+Ca})$

Covariance matrix

Why?:

Using the measured covariance matrix only: X²>>I

Extra dispersion matrix needed to set the X^2 to 1 (as in all cosmological fits with SNe Ia)

How? : Using the residual $r_{\lambda}(i)$ to the γ_{λ} fit to construct the additionnal covariance matrix

for each of the 3 cases (a,b,c)

Introduction of a **color dispersion**, not usually used

* Anti-correlation mostly increases with the wavelength differences

* Same pattern for broad filters and narrow band (spectral) correlations

Covariance matrix

Why?:

Using the measured covariance matrix only: X²>>1

Extra dispersion matrix needed to set the X^2 to 1 (as in all cosmological fits with SNe Ia)

How? : Using the residual $r_{\lambda}(i)$ to the γ_{λ} fit to construct the additionnal covariance matrix

for each of the 3 cases (a,b,c)

Introduction of a **color dispersion**, not usually used

* Anti-correlation mostly increases with the wavelength differences

* Same pattern for broad filters and narrow band (spectral) correlations

Reminder: $\delta A_{\lambda}(i) = \gamma_{\lambda} \ \delta A_{V}^{*}(i) + \eta_{\lambda} \ (+r_{\lambda})$

Conclusion / What's next

Result:

- * Two variables correlated to the intrinsic variability
- * Extinction law compatible with a Cardelli law
- *** Dispersion in color**
- * **Rv value** compatible with the **Milky Way one**
- * Better understanding of the extinction is important to reduce systematic effects in cosmological analysis

Open questions:

- * Dispersion: intrinsic or extrinsic residuals variabilities?
- * Is the result the same at an other phase?
- * Correlation of the matrix to other quantities (spectral variables, host quantities...)?
- * ... A lot of further spectral analysis are in progress with the SNFactory spectral sample

