



# Cosmic rays at highest energies – Spectrum and composition of UHE cosmic rays

#### Outline

- Energy spectrum
- Composition
  - neutrinos/photons
  - charged particles

(Anisotropy:
 See talk by O. Deligny)



Recontre Blois June 2011

Markus Roth Karlsruhe Institute of Technology

# Astroparticles: particles from astrophysical sources

... The highest energy particles in the universe.

There are Cosmic Particle Accelerators out there that go up to  $> 10^{20} \text{ eV} !!$ 

What/where are the accelerators? What is the nature of the CRs?

#### We need to determine:

- Features in the energy spectrum
  - Ankle
  - Suppression
- Abundance of particle species (known as mass composition)
- Distribution of arrival directions (see Olivier Deligny's talk)

Details of nuclear and hadronic interactions unknown at high energies



# Particle horizon: Greisen-Zatsepin-Kuzmin effect



3

I pc = 3.26 lyr ~  $\pi$  lyr

# Accelerators for 10<sup>20</sup>eV protons



 $r_{Merkur} = 58 \times 10^{6} \text{ km} = 0.387 \text{ au}$ 



# The Pierre Auger Observatory

- Auger: >400 authors from 17 countries
- Hybrid detector near Malargüe/Argentina
- Surface detector (SD): 1660 tanks deployed
- All 4 fluorescence buildings (FD) complete each with 6 telescopes (plus 3 additional at higher elevation; low energies)
- Ist 4-fold on May 20th 2007



## A telescope and a water cherenkov station



Fluorescence detecor (FD): + High Resolution + Low energy threshold + Calibration by laboratory expt's - about 15 % duty cycle

- complicated aperture

27 fluorescence (Schmidt) telescopes ...

#### ... I 660 Water Cherenkov tanks

Surface detecor (FD):
+ High Statistics (24 hrs a day)
+ Simple geometrical exposure
- Calibration of Energy from EAS-simul.



# The hybrid nature of Auger



## 4-fold event



#### SD spectrum: Energy calibration with the fluorescence detector





#### Note:

Both  $S_{38^{\circ}}$  and  $E_{SD}$  are determined experimentally. We do not rely on shower simulation.

## SD energy spectrum

35,250 SD events with E > 3 · 10<sup>18</sup> eV

Corrected for energy resolution

- energy dependent
- less than 20% over the full range

Energy scale Uncertainty: 22% (Fluorescence yield, Calibration, reconstr.)



Update of PRL 101, 061101 (2008)

# Hybrid spectrum

Energy resolution<6% Overall syst. uncert. (exposure): •10% @ 10<sup>18</sup>eV

• 6% @ 10<sup>19</sup>eV

Energy scale uncertainty: 22%

- Fluorescence yield 14%

- Reconstruction 10%
- Calibration 9.5%





Ankle at 4 EeV: Transition from galactic to extra-galactic CRs? Steepening at 30 EeV: Max. energy of accel. or propagation?

Physics Letters B 685 (2010) 239-246



Physical Review Letters 104 (2010) 091101

Elemental composition: FD

 $\langle X_{max} \rangle \, \, and \, RMS \, vs \, E$ 

Clear trend to heavier

elements

- vs simulations





Telescope array (TA) may sheed light on HiRes results (HiRes + 3 add.Telescopes + scint.Array of 600km<sup>2</sup>) Indications of Proton-Dominated Cosmic Ray Composition above 1.6 EeV

HiRes Collab. Phys.Rev.Lett.104:161101,2010

# Photon flux limit



- All top-down production models strongly constrained
- GZK photons: 0.1% (95% C.L.) accessible after 20 years of Auger SD? If Auger North built, can be reached in 10 years (arXiv:0906.2347)

#### Neutrino flux limits

One flavour neutrino limits (90% CL)



# New developments

18





#### HEAT (FD):

- 3 telescopes at 30-60° in elevation
- Lower energy threshold
- Composition study at the transition region

#### AMIGA

#### (nested SD & additional muon counters):

- 750m spacing
- Infill SD stations
- 35qm muon counter

#### Radio:

- Establishing the selftriggering radio technique (MHz range)



# Summary

Auger collects data with an annual exposure of 7000 km<sup>2</sup> sr yr Largest statistics and highest quality ever

#### Spectrum:

- ankle and steepening seen

at  $\approx 4.1 \times 10^{18}$  and  $\approx 3.9 \times 10^{19} \text{ eV}$ 

with model-independent measurement and analysis.

ankle: transition galactic to extra-galactic? (HEAT, infill SD) cut-off: likely GZK cut-off, hint that UHECRs are protons?

#### Mass composition:

- upper limits on photons and neutrinos,
   i.e. most top-down scenarios of CR origin rejected
- hint at mixed / heavy nuclear composition
   at high energies
   (Suffering from X<sub>max</sub> statistics in GZK-energy range)

#### Outlook:

The Observatory is being extended to a multi-hybrid observatory allowing high quality measurements also below ankle



# END

# Astroparticles: particles from astrophysical sources

... The highest energy particles in the universe.



 $(UHECRs: E>10^{19}eV)$ 

#### Astrophysical candidates

$$E_{\rm max} \propto Z \beta_s B L$$

Z: charge of the CRβ: shock velocityB: magnetic field strengthL: size of the accel. region

... Or top down mechanims



Hillas diagram (Blümer 2000)

## Modelling ankle and suppression



(Aloisio, Berezinsky et al., 2004)

(Hillas J. Phys. G31, 2005)

## The surface detector

- I600 Water Cherenkov tanks (I.2 m height, I0 m<sup>2</sup> area)
- 12,000 ltrs of purified Water
- Three 9" PMTs
- 40 MHz FADCs
- solar powered
- GPS based timing
- micro-wave communication



# The fluorescence detector





# The hybrid era

|                       | FD-mono                                           | SD-only                               | FD+SD (Hybrid)                                    | SD (Hyb calib)                        |
|-----------------------|---------------------------------------------------|---------------------------------------|---------------------------------------------------|---------------------------------------|
| Angular<br>resolution | ~3-5°                                             | ~I-2°                                 | ~0.5°                                             | ~I-2°                                 |
| Aperture              | dependent on<br>detector MC and atmosph.<br>cond. | purely geometric, A<br>and model free | dependent on<br>detector MC and<br>atmosph. cond. | purely geometric,<br>A and model free |
| Energy                | approx.A and<br>model free                        | A and model<br>dependent              | approx. A and<br>model free                       | approx. A and<br>model free           |
| Duty cycle            | ~13%                                              | ~100%                                 | ~13%                                              | 100%                                  |
| Experiment            | Fly's Eye, HiRes I, Hires II                      | AGASA,<br>Haverah Park                | Auger                                             | Auger                                 |

## 4-fold event



## 4-fold event





#### FD reconstruction



# Geometrical reconstruction

time bin 247

 $\chi$  angle [deg]

elevation [deg] Precise shower geometry from breaking degeneracy using SD timing Shower Detector Plane  $\tau_{:}^{showe}$  $\chi_0 - \chi_i$ prop azimuth [deg] R time [100 ns]  $\chi^2$ /Ndf= 56.5/40 FD shower front. times,  $t_i$ , at angles  $\chi_i$ , are key to finding  $R_p$  $t_i = t_0 + \frac{R_p}{c} \cdot \tan\left(\frac{\chi_0 - \chi_i}{2}\right)$ 

#### Hybrid resolution



#### How to determine the spectrum

Flux measurement  $J(E) = \frac{d^4 N(E)}{dE \ dA \ d\Omega \ dt} \simeq \frac{1}{\Delta E} \frac{\Delta N(E)}{\mathcal{E}(E)}$ 

E: straight forward from FD, but FD only active for 10% of time

> model dependent from SD, SD active for 100% of time

> > get energy calibration from FD for high statistics from SD

A, *E*: directly from size of SD above 3x10<sup>18</sup> eV

# Hybrid exposure

(Hybrid=FD+SD information)



Sys. uncert. <8% @ 10<sup>18</sup>eV Negligible at higher energies

$$J(E) = \frac{d^4 N(E)}{dE \ dA \ d\Omega \ dt} \simeq \frac{1}{\Delta E} \frac{\Delta N(E)}{\mathcal{E}(E)}$$

# Energy determination with FD



| Source             | Systematic uncertainty | Comment                      |
|--------------------|------------------------|------------------------------|
| Fluorescence yield | 14%                    | Nagano + AIRFLY              |
| P,T and humidity   |                        |                              |
| effects on yield   | 7%                     |                              |
| Calibration        | 9.5%                   | Calib. source, laser         |
| Atmosphere         | 4%                     |                              |
| Reconstruction     | 10%                    | Optical spot, Lat. Ch. dist. |
| Invisible energy   | 4%                     | Model dependence             |
|                    | 2214                   |                              |
| Total              | 22%                    |                              |
|                    |                        |                              |

FD energy: statistical uncertainty <6% determined with

- detector simulation
- validated by stereo events

FD energy: systematic uncertainty ~22%

# S(1000) attenuation with zenith angle



#### SD spectrum: Energy calibration with the fluorescence detector



# Energy calibration with the fluorescence detector

Energy uncertainty from calibration curve:

- 7% at 10 EeV
- 15% at 100 EeV

Improves with increasing hybrid statistics

Note:

Both S<sub>38°</sub> and E<sub>SD</sub> are determined experimentally. We do not rely on shower simulation.



# SD Exposure

Los

Minas

a. Pampa

Loma Amarilla

Buitres

FEZ/

Data period: I Jan 2004 - 31 Mar 2009 I 54 Tanks - >1600 Tanks

Zenith range: 0-60°



Integrated exposure: 12,790 km<sup>2</sup> sr year

## The Auger spectrum

Syst. uncertainty on flux <4%



Likelihood method to combine the spectra incl. stat. and syst. uncertainties

# The Auger spectrum



22% system. Uncertainty on FD energy scale



B. Stokes Nagoya 2010

## Horizontal air showers (HAS)

- Zenith angles > 60°
- Increase the aperture by 30%
- complex modeling and reconstruction

Event 3085995 45 signal stations  $\theta \approx 78^{\circ}$ 



## Horizontal air showers (HAS)

- Zenith angles > 60°
- Increase the aperture by 30%
- complex modeling and reconstruction

Event 3085995 45 signal stations  $\theta \approx 78^{\circ}$ 



### Horizontal air showers (HAS)

- Zenith angles > 60°
- Increase the aperture by 30%
- complex modeling and reconstruction

Event 3085995 45 signal stations  $\theta \approx 78^{\circ}$ 



## HAS energy calibration

• NI9 zenith independent measure of the muon content



### HAS energy spectrum



Auger collab. ICRC09 H. Dembinski PhD thesis, 2009 T. Schmidt PhD thesis, 2010

# Generation & Detection



### A vertical shower



#### A vertical shower



# Elemental composition: neutrinos

Only a neutrino can induce a young horizontal shower:

- DG: Down-going neutrino ( $v_e$ ,  $v_\mu$ ,  $v_\tau$ ; CC and NC interactions)
- ES: Earth skimming shower (CC in earth; τ decay above ground)



#### **Neutrino Showers:**

- Deep, very inclined (36,000 g cm<sup>-2</sup>): elongated shower footprint
- Start as broad signals, narrowing as EM particles range out

#### «Young» vs «old» showers



## SD event tagging: Neutrinos



#### **Neutrino Showers:**

- Deep, very inclined (36,000 g cm<sup>-2</sup>):
  - elongated shower footprint
- Start as broad signals, narrowing as EM particles range out
- Upgoing events: earth-skimming  $V_T$
- Downgoing events: all flavors, CC + NC interactions

# SD event tagging: photons



- γ showers develop deep in atmosphere (+200 g cm<sup>-2</sup> w.r.t. hadrons)
- EM particles in shower do not have time to range out before reaching ground level. Showers look "young":
  - Moderately inclined
  - Large scatter in particle arrival times; large risetime in signal trace
  - Shower front has smaller radius of curvature w.r.t. "old" hadronic shower

# Hybrid event tagging: photons

- Hybrid mode: search for showers with unusually deep X<sub>max</sub> using FD telescopes
- Strong geometry cuts: X<sub>max</sub> contained in field of view
- Strong profile/fiducial volume cuts: vertical and distant showers rejected to remove trigger and reconstruction biases
- Strong atmospheric cuts to remove distorted profiles (cloud removal)



Astropart. Phys. 31 (2009), 399-406

#### Average shower maximum X<sub>max</sub>

Primary protons:

 $\langle X_{max} \rangle = D_{10} \lg(E) + const$ 

Superposition model:

 $\langle X_{max} \rangle = D_{10} \lg(E/A) + const$ 



#### Shower to shower fluctuations

Qualitatively

 $RMS(A_1) < RMS(A_2)$ 

for  $A_1 > A_2$ 



## FD results

 $\langle X_{max} \rangle \,\, and \, RMS \, vs \, E$ 

Broken line fit: Slopes D [g/cm<sup>2</sup>/decade]



# Particle physics: Validation of hadronic interaction models

Self consistent description of Auger data is obtained only with a number of muons 1.3 to 1.7 times higher predicted by QGSJET-II for protons at an energy 25-30% higher than that from FD calibration

The results are marginally compatible with the predictions of QGSJET-II for Iron primaries



See recent talk by Ralph Engel here at same occasion (modified x-sections, ...)

# Enhancements

## HEAT: High Elevation Auger Telescopes

![](_page_60_Figure_1.jpeg)

- 3 standard Auger telescopes tilted to cover 30 60° elevation
- Custom-made metal enclosures
- Also prototype study for northern Auger Observatory

### HEAT: High Elevation Auger Telescopes

![](_page_61_Figure_1.jpeg)

#### Hillas model

#### Bereszinsky model

![](_page_62_Figure_2.jpeg)

![](_page_63_Figure_0.jpeg)

# Monitoring the atmosphere (Auger)

Monitor the state of

- the molecular atmosphere
- aerosol distribution and scattering properties
- night-time cloud

![](_page_64_Picture_6.jpeg)

#### cloud detection

![](_page_64_Figure_8.jpeg)

infra-red cameras and lidar

![](_page_64_Picture_10.jpeg)

![](_page_64_Figure_11.jpeg)

lidars

![](_page_64_Picture_12.jpeg)

#### radiosondes