Cosmic rays at highest energies Spectrum and composition of UHE cosmic rays

PIERRE AUGER OBSERVATORY

Outline

- Energy spectrum
- Composition
- neutrinos/photons
- charged particles
- (Anisotropy:

See talk by O. Deligny)

Markus Roth
Karlsruhe Institute of Technology

Recontre Blois June 201I

Astroparticles: particles from astrophysical sources

...The highest energy particles in the universe.

There are Cosmic Particle Accelerators out there that go up to $>10^{20} \mathrm{eV}$!!

What/where are the accelerators? What is the nature of the CRs?

We need to determine:

- Features in the energy spectrum
- Ankle
- Suppression
- Abundance of particle species
(known as mass composition)
- Distribution of arrival directions (see Olivier Deligny's talk)

Details of nuclear and hadronic interactions unknown at high energies

Particle horizon:

Greisen-Zatsepin-Kuzmin effect

Photo pion production ($E_{p}>5 \times 10^{19} \mathrm{eV}$ due to CMB) :

$$
\begin{aligned}
& p+\gamma_{3 \mathrm{~K}} \rightarrow \Delta^{+} \rightarrow p+\pi^{0} \rightarrow \ldots+2 \gamma \\
& p+\gamma_{3 \mathrm{~K}} \rightarrow \Delta^{+} \rightarrow n+\pi^{+} \rightarrow \ldots+\nu_{\mu}+\bar{\nu}_{\mu}+\nu_{e}
\end{aligned}
$$

Photo dissociation

$$
{ }^{56} \mathrm{Fe}+\gamma_{3 \mathrm{~K}} \rightarrow{ }^{55} \mathrm{Fe}+n
$$

Universe becomes opaque for $\mathrm{E}>610^{19} \mathrm{eV}$
Sources must be close (<100Mpc)!
If sources are universal:
Cut-off in CR spectrum

Accelerators for $10^{20} \mathrm{eV}$ protons

$$
r_{\text {Merkur }}=58 \times 10^{6} \mathrm{~km}=0.387 \mathrm{au}
$$

Primärteilchen

Elektronisches
Schmidt-Teleskop

Wasser-
Cherenkovdetektoren

The Pierre Auger Observatory

- Auger: >400 authors from 17 countries
- Hybrid detector near Malargüe/Argentina
- Surface detector (SD): 1660 tanks deployed
- All 4 fluorescence buildings (FD) complete each with 6 telescopes
(plus 3 additional at higher elevation; low energies)
- Ist 4-fold on May 20th 2007

A telescope and a water cherenkov station

27 fluorescence (Schmidt) telescopes ...
... 1660 Water Cherenkov tanks
Surface detecor (FD):

+ High Statistics (24 hrs a day)
+ Simple geometrical exposure
- Calibration of Energy from EAS-simul.

The hybrid nature of Auger

4-fold event

SD spectrum:

Energy calibration with the fluorescence detector

Note:

Both $S_{38^{\circ}}$ and ESD are
determined experimentally.
We do not rely on shower
simulation.

SD energy spectrum

35,250 SD events with $\mathrm{E}>3 \cdot 10^{18} \mathrm{eV}$

Corrected for energy resolution

- energy dependent
- less than 20% over the full range

Energy scale
Uncertainty: 22\% (Fluorescence yield, Calibration, reconstr.)

Update of PRL IOI, 06IIOI (2008)

Hybrid spectrum

Energy resolution<6\% Overall syst. uncert. (exposure):
$\cdot 10 \%$ @ $10^{18} \mathrm{eV}$

- 6\% @ $10^{19} \mathrm{eV}$

Energy scale
uncertainty: 22\%

- Fluorescence yield I4\%
- Reconstruction I0\%
- Calibration 9.5\%

The Auger spectrum

Ankle at 4 EeV :
Transition from galactic to extra-galactic CRs?
Steepening at 30 EeV :
Max. energy of accel. or propagation?
Physics Letters B 685 (2010) 239-246

Elemental

 composition: FD$\left\langle X_{\max }\right\rangle$ and RMS vs E

- vs simulations

Clear trend to heavier elements

Elemental

 composition: FD$\left\langle\mathrm{X}_{\max }\right\rangle$ and RMS vs E

- vs simulations

Telescope array (TA) may sheed light on HiRes results
(HiRes +3 add. Telescopes

+ scint.Array of $600 \mathrm{~km}^{2}$)

Clear trend to heavier elements

Photon flux limit

- All top-down production models strongly constrained
- GZK photons: 0.1\% (95\% C.L.) accessible after 20 years of Auger SD? If Auger North built, can be reached in 10 years (arXiv:0906.2347)

Neutrino flux limits

New developments

HEAT (FD):

- 3 telescopes at $30-60^{\circ}$ in elevation
- Lower energy threshold
- Composition study at the transition region

AMIGA

(nested SD \& additional muon counters):

- 750m spacing
- Infill SD stations
- 35qm muon counter

Radio:

- Establishing the selftriggering radio technique (MHz range)

Existing tank array 1500 m

Summary

Auger collects data with an annual exposure of $7000 \mathrm{~km}^{2} \mathrm{sr} \mathrm{yr}$ Largest statistics and highest quality ever

Spectrum:

- ankle and steepening seen at $\approx 4.1 \times 10^{18}$ and $\approx 3.9 \times 10^{19} \mathrm{eV}$ with model-independent measurement and analysis.
ankle: transition galactic to extra-galactic? (HEAT, infill SD) cut-off: likely GZK cut-off, hint that UHECRs are protons?

Mass composition:

- upper limits on photons and neutrinos, i.e. most top-down scenarios of CR origin rejected
- hint at mixed / heavy nuclear composition at high energies
(Suffering from $X_{\max }$ statistics in GZK-energy range)
Outlook:
The Observatory is being extended to a multi-hybrid observatory allowing high quality measurements also below ankle

END

Astroparticles: particles from astrophysical sources

...The highest energy particles in the universe.

There are Cosmic Particle Accelerators out there that go up to $>10^{20} \mathrm{eV}$!!

What/where are the accelerators? What is the nature of the CRs?

We need to determine:

- Features in the energy spectrum
- Ankle
- Suppression
- Abundance of particle species
- Distribution of arrival directions

Details of nuclear and hadronic interactions unknown at high energies

Astrophysical candidates

$$
E_{\max } \propto Z \beta_{s} B L
$$

Z: charge of the CR
B: shock velocity
B: magnetic field strength
L: size of the accel. region
... Or top down mechanims

Modelling ankle and suppression

(Hillas J. Phys. G3I, 2005)

The surface detector

- 1600 Water Cherenkov tanks (1.2 m height, $10 \mathrm{~m}^{2}$ area)
- 12,000 Itrs of purified Water
- Three 9" PMTs
- 40 MHz FADCs
- solar powered
- GPS based timing
- micro-wave communication

The fluorescence detector

The hybrid era

FD-mono

Duty cycle ~13\%
~100\%

AGASA Haverah Park

FD+SD (Hybrid)
SD (Hyb calib)

$$
\sim 0.5^{\circ}
$$

dependent on detector MC and atmosph. cond.
approx. A and model free
~13\%
100\%

4-fold event

4-fold event

SD reconstruction

Detector signal at 1000 m from shower core

- S(I000)
- determined for each surface detector event
$S(I 000) \sim E$

FD reconstruction

Geometrical reconstruction

Precise shower geometry from breaking degeneracy using SD timing

times, t_{i}, at angles X_{i}, are key to finding R_{p}

$$
t_{i}=t_{0}+\frac{R_{p}}{c} \cdot \tan \left(\frac{\chi_{0}-\chi_{i}}{2}\right)
$$

time bin 247

Hybrid resolution

FD only	$\sim 500 \mathrm{~m}$
FD + I station	$\sim 50 \mathrm{~m}$
Hybrid energy resolution $\sim 8 \%$ above 10 EeV	
Hybrid $X_{\text {max }}$ resolution	$\sim 20 \mathrm{~g} / \mathrm{cm}^{2}$

How to determine the spectrum

Flux measurement $\quad J(E)=\frac{d^{4} N(E)}{d E d A d \Omega d t} \simeq \frac{1}{\Delta E} \frac{\Delta N(E)}{\mathcal{E}(E)}$

E: \quad straight forward from FD, but FD only active for 10\% of time
model dependent from SD, SD active for 100% of time

get energy calibration from FD for high statistics from SD

$$
\begin{array}{ll}
\mathrm{A}, \varepsilon: & \text { directly from size of } \mathrm{SD} \\
& \text { above } 3 \times 10^{18} \mathrm{eV}
\end{array}
$$

Hybrid exposure

(Hybrid=FD+SD information)

Sys. uncert. $<8 \%$ @ $10^{18} \mathrm{eV}$ Negligible at higher energies

$$
J(E)=\frac{d^{4} N(E)}{d E d A d \Omega d t} \simeq \frac{1}{\Delta E} \frac{\Delta N(E)}{\mathcal{E}(E)}
$$

Energy determination with FD

Source	Systematic uncertainty	Comment
Fluorescence yield	14%	Nagano + AIRFLY
P,T and humidity		
effects on yield	7%	
Calibration	9.5%	Calib. source, laser
Atmosphere	4%	
Reconstruction	10%	Optical spot, Lat. Ch. dist.
Invisible energy	4%	Model dependence
Total	22%	

FD energy: systematic uncertainty ~22\%

Systematic

uncertainty Comment

14% Nagano + AIRFLY
7%
9.5\% Calib. source, laser
10% Optical spot, Lat. Ch. dist.
4% Model dependence

Total
22%

FD energy: statistical uncertainty < 6% determined with

- detector simulation
- validated by stereo events

S(I000) attenuation with zenith angle

Isotropy of cosmic rays
Integral Constant Intensity Cut Constant Intensity \equiv Fixed energy

Given a measured $S(1000)(\theta)$

38° is the average zenith of high-quality events

SD spectrum:

Energy calibration with the fluorescence detector

$S_{38^{\circ}} \propto$ SIOOO corrected for zenith dependency

Energy uncertainty from calibration curve:

- 7% at 10 EeV
- 15% at 100 EeV

Improves with increasing hybrid statistics

Note:

Both $S_{38^{\circ}}$ and ESD are determined experimentally. We do not rely on shower simulation.

Energy calibration with the fluorescence detector

Energy uncertainty from calibration curve:

- 7\% at 10 EeV
- 15% at 100 EeV

Improves with increasing hybrid statistics

Note:

Both $S_{38^{\circ}}$ and ESD are determined experimentally. We do not rely on shower simulation.

SD Exposure

Data period:

I Jan 2004-3I Mar 2009
154 Tanks - >1600 Tanks

Zenith range: $0-60^{\circ}$

Integrated exposure: $12,790 \mathrm{~km}^{2}$ sr year

The Auger spectrum

Syst. uncertainty on flux $<4 \%$

Likelihood method to combine the spectra incl. stat. and syst. uncertainties

The Auger spectrum

22% system. Uncertainty
on FD energy scale

B. Stokes Nagoya 2010

Horizontal air showers (HAS)

- Zenith angles $>60^{\circ}$
- Increase the aperture by 30%
- complex modeling and reconstruction

Event 3085995
45 signal stations
$\theta \approx 78^{\circ}$

Horizontal air showers (HAS)

- Zenith angles $>60^{\circ}$
- Increase the aperture by 30%
- complex modeling and reconstruction

Event 3085995
45 signal stations
$\theta \approx 78^{\circ}$

Horizontal air showers (HAS)

- Zenith angles $>60^{\circ}$
- Increase the aperture by 30%
- complex modeling and reconstruction

Event 3085995
45 signal stations
$\theta \approx 78^{\circ}$

HAS energy calibration

- NI9 zenith independent measure of the muon content
- Energy resolution of 22%

HAS energy spectrum

$$
\begin{aligned}
& 60^{\circ}<\theta<80^{\circ} \\
& E>6 \cdot 10^{18} \mathrm{eV} \\
& \text { I750 events } \\
& \text { I Jan } 2004-3 \text { I Dec } 2008
\end{aligned}
$$

$$
3850 \text { km² sr year }
$$

Vertical spectrum Reconstruction A
Reconstruction B

Auger collab. ICRC09
H. Dembinski PhD thesis, 2009
T. Schmidt PhD thesis, 2010

Generation

\&

Detection

Pion decay at source a/o propa.:

$$
\begin{aligned}
\pi^{ \pm} \rightarrow & \mu^{ \pm}+\nu_{\mu} \\
& \hookrightarrow \mu^{ \pm} \rightarrow e^{ \pm}+\nu_{e}+\nu_{\mu}
\end{aligned}
$$

Flavour counting $2 \nu_{\mu}+\nu_{e}$

$$
\begin{aligned}
& \tau \rightarrow \mu+\nu_{\mu}+\nu_{\tau} \\
& \rightarrow \text { track } \\
& \tau \longrightarrow e+\nu_{e}+\nu_{\tau} \\
& \rightarrow \text { shower } \odot \\
& \tau \rightarrow h h+\nu_{\tau} \\
& \rightarrow \text { shower } \odot
\end{aligned}
$$

Neutrino oscillation $1 \nu_{e}+1 \nu_{\mu}+1 \nu_{\tau}$

A vertical shower

A vertical shower

Elemental composition: neutrinos

Only a neutrino can induce a young horizontal shower:

- DG: Down-going neutrino ($\mathrm{V}_{\mathrm{e}}, \mathrm{V}_{\mu}, \mathrm{V}_{\mathrm{T}} ; \mathrm{CC}$ and NC interactions)
- ES: Earth skimming shower (CC in earth; T decay above ground)

Neutrino Showers:

- Deep, very inclined $\left(36,000 \mathrm{~g} \mathrm{~cm}^{-2}\right)$: elongated shower footprint
- Start as broad signals, narrowing as EM particles range out

«Young» vs «old»showers

SD event tagging: Neutrinos

Neutrino Showers:

- Deep, very inclined $\left(36,000 \mathrm{~g} \mathrm{~cm}^{-2}\right)$: elongated shower footprint
- Start as broad signals, narrowing as EM particles range out
- Upgoing events: earth-skimming V_{T}
- Downgoing events: all flavors, CC + NC interactions

SD event tagging: photons

- γ showers develop deep in atmosphere ($+200 \mathrm{~g} \mathrm{~cm}^{-2}$ w.r.t. hadrons)
- EM particles in shower do not have time to range out before reaching ground level. Showers look "young":
- Moderately inclined
- Large scatter in particle arrival times; large risetime in signal trace
- Shower front has smaller radius of curvature w.r.t."old" hadronic shower

Hybrid event tagging: photons

- Hybrid mode: search for showers with unusually deep $X_{\text {max }}$ using FD telescopes
- Strong geometry cuts: $X_{\text {max }}$ contained in field of view
- Strong profile/fiducial volume cuts: vertical and distant showers rejected to remove trigger and reconstruction biases
- Strong atmospheric cuts to remove distorted profiles (cloud removal)

Astropart. Phys. 3 I (2009), 399-406

Average shower maximum $\mathrm{X}_{\max }$

Primary protons:

$$
\left\langle X_{\max }\right\rangle=D_{10} \lg (\mathrm{E})+\text { const }
$$

Superposition model:

$$
\left\langle X_{\max }\right\rangle=D_{10} \lg (E / A)+\text { const }
$$

Shower to shower fluctuations

Qualitatively
$\operatorname{RMS}\left(\mathrm{A}_{1}\right)<\operatorname{RMS}\left(\mathrm{A}_{2}\right)$
for $A_{1}>A_{2}$

FD results

$\left\langle X_{\max }\right\rangle$ and RMS vs E

Broken line fit:
Slopes D [g/cm²/decade]

Particle physics: Validation of hadronic interaction models

Self consistent description of Auger data is obtained only with a number of muons 1.3 to 1.7 times higher predicted by QGSJET-II for protons at an energy 25-30\% higher than that from FD calibration

The results are marginally compatible with the predictions of QGSJET-II for Iron primaries

See recent talk by Ralph Engel here at same occasion (modified x-sections, ...)

Enhancements

HEAT: High Elevation Auger Telescopes

- 3 standard Auger telescopes tilted to cover 30-60 elevation
- Custom-made metal enclosures
- Also prototype study for northern Auger Observatory

HEAT: High Elevation Auger Telescopes

Hillas model

Bereszinsky model

Monitoring the atmosphere (Auger)

Monitor the state of

- the molecular atmosphere
- aerosol distribution and scattering properties
- night-time cloud

cloud detection

infra-red cameras and lidar

lidars

UV lasers

radiosondes

