

First results on Higgs boson searches and prospects from CMS

Cristina Botta Universita' degli Studi di Torino & INFN on behalf of the CMS collaboration

23rd Rencontres de Blois on "Particle Physics and Cosmology", 29 May-3 Jun 2011

CMS' Path to the Higgs

Hunting the Higgs with the 2010 data status of CMS' searches

Projections

how and when we can discover the SM Higgs or prove it doesn't exist

Cristina Botta - Higgs searches from CMS - 27.05.2011

CMS detector

Outline

CMS's Path to the Higgs

Hunting the Higgs with the status of CMS' searches 2010 data

Projections how and when we can discover the SM Higgs or prove it doesn't exist

Cristina Botta - Higgs searches from CMS - 27.05.2011

$gg \rightarrow H \rightarrow WW^* \rightarrow I\nu I\nu$

The signature

- 2 opposite charged- isolated- hight pt leptons
- large missing transverse energy
- no jet activity

The backgrounds

real or fake sources of leptons and MET
 W+jets and QCD, DY, tt, tW
 irreducible WW

No narrow mass

peak can be reconstructed

- Count excess
 - cut based analysis
 - multivariate approach

arXiv:1102.5429, accepted by PLB for publication

Selection

Background control & Systematics

Bkg control

Reducible bkg

QCD and W+jets background (fake leptons) estimated from fake rate on a jet dominated sample

Top background estimated from MC due to lack of statistics (100% uncertainty) strategy on top-enriched sample for the future

DY/γ* background extrapolation from Z peak in signal region Irreducible WW

🛑 data-driven

- l control region: invert m_{II} cut
- extrapolated in the signal region
- ~50% uncertainty with L=36pb⁻¹

Signal Efficiency

Source	Relative uncertainty (%)		
Luminosity	11		
Trigger ε	1,5		
Muon ε	0,7		
Electron ε	2,4		
Momentum scale	1,3		
pu	0,5		
Jet veto ε	5,5		
PDF	3,0		

Jet Veto

- most delicate ingredient of the analysis
- stimate from data as a ratio:

 $\epsilon^{\text{data}}_{H \rightarrow WW} = \epsilon^{MC}_{H \rightarrow WW} (\epsilon^{\text{data}}_{Z} / \epsilon^{MC}_{Z})$

- ε^{MC}_{H→WW}/ε^{MC}_Z mainly affected by the theoretical uncertainty due to higher order corrections
 - experimental uncertainties cancel out
 ■ Uncertainty computed compare different generators

Results

Not yet sensitivity to SM Higgs (× 2.1 @ m_H =160 GeV/c²)

In a 4th generation model with infinite quark masses (conservative),
 Higgs mass excluded in range
 [144-207] GeV/c² at 95% C.L.

Competitive with TeVatron limits $(m_H = [131-204] \text{ GeV/c}^2 \text{ with } 4.8+5.4 \text{ fb}^{-1})$

stat interpretation: Bayesian interference results from multivariate approach

Looking beyond the SM the Higgs sector becomes much richer: MSSM

- 2 doublets of Higgs scalar fields, 5 Physical Higgs Bosons: h,H,A,H⁺,H[−]
- equal to the regime $\varphi = h$, H, A masses are degenerate
 - m_{ϕ} : sum of (pseudo-scalar + scalar) Higgs of about same mass
- souplings of the neutral ϕ to down-type quarks and leptons are enhanced at high tan β :

cross section increases and BR($\phi \rightarrow \tau \tau$) enhanced (cleaner signature then bb decay)

```
Search for gg \rightarrow \phi(bb) \rightarrow \tau \tau
```



```
\varphi(bb) \rightarrow \tau \tau \rightarrow \mu + \tau h (\tau h = hadronic decay)
\varphi(bb) \rightarrow \tau \tau \rightarrow e + \tau h (\tau h = hadronic decay)
\varphi(bb) \rightarrow \tau \tau \rightarrow e + \mu
```


arXiv:1104.1619, accepted by PRL for publication

Selection

Selection

- isolated, Pt>15 electrons/muons
- analysis makes use of Particle Flow techniques to identify hadronic taus
 - HPS reconstructs the individual resonances of the τ decays \tilde{g}
 - The jet fake rate is 1% while achieving an efficiency of 50%
- sut on the M_T (lepton and E_T^{miss}) + other leptons veto

Main bkg: QCD, tt and Z->II

control via OS-SS normalization, jet-to-tau fake rate

ττ mass reconstruction

Likelihood fit of momenta of visible decay products and of neutrinos produced in τ decays

Results

Xsections and BR for MSSM $\varphi \rightarrow \tau \tau$ from:

LHC cross section working group yellow report: <u>arXiv:1101.0593</u>

No signal excess observed

- Set upper limits on σxBR for different m_A hypothesis (assuming tg β = 30)
- observed limit agrees with expected sensitivity
- the results can be interpreted in MSSM parameter space of tgβ vs m_A, choosing a benchmark scenario: m_h^{max}
- we significantly extended previous limits

Charged Higgs

Charged H[±] boson can contribute to ttbar decays

- search for ttbar events with H[±] that sostitute W[±] in ttbar decays
- if exists it alters the SM predictions in τ lepton production in ttbar decays

Selection

- the same as for ttbar cross section measurement
- 🛢 2 di-lepton channel considered: $\mathbf{e} \mathbf{\tau}$ and $\mathbf{\mu} \mathbf{\tau}$
 - One muon (electron) with p_T > 20 (30) GeV/c
 - B Hadronic τ with $p_T > 20$ GeV/c, HPS identification
 - At least two jets p_T > 30 GeV/c
 - 鬬 MET > 40 GeV

No signal excess observed

- upper limit on the BR (t→H[±]b) assuming BR(H⁺→ τ ⁺ ν)=1 ~0.25-0.30 for 80 GeV/c² < m_{H+} < 140 GeV/c²
 - limit already comparable with Tevatron results

CMS-PAS-HIG-11-002

Doubly Charged Higgs

Possible extension of the SM adding

scalar triplet ($\Phi^{\pm\pm}, \Phi^{\pm}, \Phi^{0}$)

triplet Yukawa coupling responsible for the neutrino mass

Strategy

- search for events with 3 or 4 isolated charged leptons any flavour, and look for resonance peaks in SS dilepton mass distribution
- sensitivity in the Φ mass range where $\Phi \rightarrow W^+W^-$ is kinematically forbidden
- BRs for a different I_1I_2 pairs depend on the neutrino mass hierarchy and phase

Normal Hierarchy / Inverse Hierarchy / Degenerate State

No signal excess observed

- **I** lower limit at 95% C.L. are set on the $\Phi^{\pm\pm}$
 - s of 156 GeV in the $\mu\mu$ (BR $\Phi^{\pm\pm} \rightarrow \mu\mu$ =100%)
 - of 154 GeV in the $e\mu$ (BR $\Phi^{\pm\pm} \rightarrow e\mu = 100\%$)
 - (116-131) GeV for the defined benchmark points (type II seesaw model)
- Φ^{±±} is excluded in mass ranges beyond those set previously by LEP and Tevatron

CMS-PAS-HIG-11-001

Outline

CMS's Path to the Higgs Hunting Rojections 2010 data status of CMS' searches for 2011-2012 Projections how and when we can discover the SM Higgs or prove it doesn't exist

Cristina Botta - Higgs searches from CMS - 27.05.2011

SM Higgs Exclusions: 1fb⁻¹@ 7 TeV

Significance of Observation: 5 fb⁻¹@ 7 TeV

Conclusions

- The CMS experiment has revisited the Standard Model in a new regime at record centre-of-mass energy of 7 TeV for p-p collisions and a **solid ground** has been established, with EWK boson candles, first dibosons, di-top and single top measurements, on the route towards the Higgs boson(s)
- A SM-Higgs boson with mass in 144-207 GeV/c² range in an extension of the Standard Model with 4-fermion generations is excluded
- New territories are being explored for extending Higgs sector (e.g. MSSM)
- An exclusion of the SM-Higgs is possible at the 95% CL for and integrated luminosity of 1fb⁻¹ for masses between 135-450 GeV/c²
- A 3σ observation for the SM-Higgs bosons is possible for integrated luminosity of 5 fb⁻¹ and masses above 120-550 GeV/c²
- A 5o discovery for the SM-Higgs bosons is possible for integrated luminosity of 5 fb⁻¹ and masses above 140-220 GeV/c²
- Very low masses 115 < M_H < 130 GeV/c² will require the highest integrated luminosity and relay for a discovery mostly on H in 2 gamma and H in ZZ^{*} (+possibly boosted Higgs in bb)

Wide range of searches underway with novel techniques

Backup

Cristina Botta - Higgs searches from CMS - 27.05.2011

LHC cross section working group

CERN-2011-002 arXiv:1101.0593

LHC cross section working group

Xsections for MSSM $\phi \rightarrow \tau \tau$

$\sigma(bbA)$: Theoretical Uncertainties						
4FS calculation		5FS calculation				
M_A (GeV)	scale	PDF+ α_s	M_A (GeV)	scale	PDF+ α_s	
100	24%	-	100	5%	3%	
300	24%	-	300	2%	6%	
500	26%	-	500	2%	8%	
1000	30%	-	1000	1%	2%	

Comparison of the 4-flavour NLO and 5-flavour NNLO bbHiggs cross section for a pseudo-scalar Higgs.

> Discussion within the LHC cross section working group. Envelope method for higher masses?

m_h^{max} scenario for MSSM $\phi \rightarrow \tau \tau$

It is customary to discuss searches for MSSM Higgs bosons in terms of benchmark scenarios where the lowest-order input parameters $\tan \beta$ and M_A are varied, while the other SUSY parameters entering via radiative corrections are set to certain benchmark values. In this study the m_h^{max} benchmark scenario is considered, which in the on-shell scheme is defined as

$$M_{SUSY} = 1$$
TeV, $X_{PQt} = 2M_{SUSY}$, $\mu = 200$ GeV, $M_{\tilde{g}} = 800$ GeV, $M_2 = 200$ GeV, $A_b = A_t$, (1)

where M_{SUSY} denotes the common soft-SUSY-breaking squark mass of the third generation, $X_t = A_t - \mu / \tan \beta$ the stop mixing parameter, A_t and A_b the stop and sbottom trilinear couplings, respectively, μ the Higgsino mass parameter, $M_{\tilde{g}}$ the gluino mass, and M_2 the SU(2)gaugino mass parameter. M_1 is fixed via the GUT-relation $M_1 = 5/3M_2 \sin \theta_w / \cos \theta_w$.

Projections

Used state of the art cross-sections

signal NNLO for gg, NLO for VBF,VH

background processes at NLO

Full GEANT based detector simulation

Simple cut-based analysis, mostly counting events:

no SHAPE analysis used (can improve sensitivity by ~(20-100)%)

Validation from 2010 data:

excellent agreement between data and detector simulation

detector performance close to design in most cases

measured production rates of background processes in good agreement with expectations (5-30 % uncertainties)

In general, analyses with data more sensitive than the simulation based studies used in the projections...and will continue to improve!

Projections are indicative not predictive !