

irfu

saclay

MSSM Higgs bosons searches in $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV

Fabrice Couderc For the DØ & CDF collaborations

Ist of June 2011

Les Rencontres de Blois Blois, France

- ✓ Introduction
- ✓ MSSM Higgs searches
 - inclusive $h \rightarrow \tau \tau$ search
 - associated hb production
 - bbb final state
 - $\tau \tau b$ final state
- ✓ Conclusions & Prospects

- MSSM: exactly 2 Higgs doublets coupling to down-type quarks (vev v_d), and up-type quarks (vev v_u). $tan\beta = v_u/v_d$ NB: $tan\beta \sim 35 = m_t/m_b$ is appealing (large $tan\beta$)
- After EW breaking: 5 physical states
 - 3 neutral Higgs bosons: h/H (CP-even) and A (CP-odd)
 convention: m_h < m_H, h/H/A generically denoted Φ
 - 2 charged Higgs bosons: H[±]
- At tree level: EW breaking controlled by M_A and tanβ.
 Radiative corrections make it more model dependent
- High tanβ regime:
 - h/A or H/A are degenerate in mass
- $\sigma_{\text{prod}} \ge 2!$
- coupling to b quarks enhanced by $tan\beta$
- neutral Higgs: $\mathcal{B}(\phi \to b\overline{b}) \approx 90 \%$ and $\mathcal{B}(\phi \to \tau^+ \tau^-) \approx 10 \%$

0 (dd)

Susy Higgs production

Fabrice Couderc

MSSM Higgs searches

Golden modes

Beyond tree level, $h \rightarrow \tau \tau$ modes are less sensitive to the MSSM parameters than $h \rightarrow bb$

Fabrice Couderc

Ł

MSSM Higgs searches

- τ -lepton channels peculiarities:
- several channels to combine
- relatively "soft" decay products (multijet background, triggering...)

Need to reconstruct τ hadronic decay (τ_h)

- τ -lepton channels peculiarities:
- several channels to combine
- relatively "soft" decay products (multijet background, triggering...)

Need to reconstruct τ hadronic decay (τ_h)

- CDF: eff=50% vs fake rate < 1%

glillill

g MMMM

8

- $D \emptyset: \tau_{\mu} \tau_{h} (2.2 \text{ fb}^{-1}), \tau_{e} \tau_{h} (1.0 \text{ fb}^{-1}), \tau_{\mu} \tau_{e} (1.0 \text{ fb}^{-1})$ Ifb⁻¹ result: Phys. Rev. Lett. **101**, 071804 (2008)
- CDF: $\tau_{\mu}\tau_{h}$, $\tau_{e}\tau_{h}$, $\tau_{\mu}\tau_{e}$ (1.8 fb⁻¹)
- Search for 2 high pT isolated leptons, opposite sign
- Escaping neutrinos info is partially recovered by using ET
- Look for a bump in:

$h \rightarrow \tau \tau Results$

• $b\Phi \rightarrow bbb$ selection:

- ▶ 3 to 5 high p_T jets
- at least 3 b-tagged jets

Large multijets background:

- trigger on multijets events + impact parameter b-tag (60-70% efficient)
- Need a powerful b-tagger to reject the abundant multijet background
- Challenging background model!
- **b-tagging** (a) DØ: combine var. in a multivariate discriminant **b-tagging** (a) CDF: displaced vertices + L_{xy}/σ cut
- + vertex mass separation

MSSM Higgs searches

bbb strategy example @ DØ

- ✓ bkg composition from global fit to: 0/1/2/3 b-tag samples
- \checkmark bkg shape from data using the 2 b-tag sample (signal free) via:

$$S_{3tag}^{exp}(M_{bb}, \mathcal{D}) = \frac{S_{3tag}^{MC}(M_{bb}, \mathcal{D})}{S_{2tag}^{MC}(M_{bb}, \mathcal{D})} \times S_{2tag}^{DATA}(M_{bb}, \mathcal{D})$$

Fabrice Couderc

- CDF employs a similar strategy:
 - ✓ predict background shapes from 2 b-tag sample (with b-tagging probability applied on 3rd jet).
 - ✓ 2D fit to data (dijet mass vs flavor separator for bkg composition). Fit is done w & w/o signal

MSSM interpretation

160

180

200

max mixing, μ =0 GeV _____ tan β =40 : Γ =5 GeV Very sensitive to radiative corrections $\tan\beta=60$: $\Gamma^{\phi}=12$ GeV 1.2 $\tan\beta=80$: $\Gamma^{\phi}=22$ GeV High $\tan\beta$: signal width effect not negligible tanβ=100 : Γ =34 GeV 0.8 (compared to the experimental mass resolution). 0.6 $\frac{d\sigma}{dm} = \sigma(m, \tan\beta, \Gamma = 0) \times BW(m, m_{\phi}, \tan\beta)$ 0.4 0.2 CDF Run II Preliminary (2.2/fb) 95% C.L. upper limits 200 tan₃ 60 80 40 120140100 expected limit mass spectrum (GeV) 180F Exp. sensitivity down 1 σ band 160 2σ band to $tan\beta=40$ 140observed limit DØ, 5.2 fb⁻¹ a) m, max, μ=-200 GeV 120 120 DØ exclusion LEP exclusion Data compatible 100 100 with bkg but 80 80 both collab. see a 60 60 broad excess at 40 40 Observed $m_{\rm b}^{\rm max}$ scenario, μ = -200 GeV ($\Delta_{\rm b}$ =-0.21) Expected the $1-2\sigma$ level. $Exp. \pm 1 s.d.$ 20F Higgs width included 20 Exp. ± 2 s.d. 150 200 250 300 100 120 180 200 100 140 160 M_₄ [GeV] m_{Λ} (GeV/c²)

Fabrice Couderc

MSSM Higgs searches

$b\Phi \rightarrow b\tau_e \tau_h search$

- Channel complementary to
 - bΦ→bbb: lower Br but much lower bkg, less sensitive to radiative corrections
 - $\Phi \rightarrow \tau \tau$: more sensitive near the Z peak
- $Z \rightarrow \tau \tau$: require one b-tag jet
- Specific discri against main backgrounds: multijets (D_{MJ}) and t t (D_{tt}).
- Final discri: (D_{MJ}+10)xD_{tt} / 20

bφ→bτ_μτ_h search

[Brand New for Blois] $b\tau_{\mu}\tau_{h}$: 7.3 fb⁻¹

- Specific discriminants against main backgrounds: $t \bar{t} (D_{tt})$, multijets (D_{MJ}) and $Z \rightarrow \tau \tau (NN_b)$
- Final discri: D_f likelihood formed with D_{tt} , D_{MJ} , NN_b , M_{hat}
- Inclusive trigger approach
- Main background $(Z \rightarrow \tau \tau)$ constrained from data using $Z \rightarrow \mu \mu$. Greatly reduces the loss of sensitivity due to syst. uncertainties.

bφ→bττ results

- Results with up to 7.3 fb⁻¹ reported here
- Also H⁺ searches not covered in this talk
- Reaching the interesting region of tan $\beta \approx 30-40$ (even below).
- $b\tau_{\mu}\tau_{h}$ is (still) competitive with LHC inclusive $\tau\tau$ searches and even achieve a better sensitivity at low M_A. This is also a different and complementary channel (involving b-tagging)...
- Some excesses both for D0 and CDF in the bbb channel, worth to keep an eye on.
- Several modes with similar sensitivity (combine!)
- Expected (very) soon:
 - $hb \rightarrow bbb$ search update
 - inclusive $h \rightarrow \tau \tau$ update
 - combinations update
 - ...

Several updates planned for summer'll, stay tuned!

Fabrice Couderc

Why looking to the MSSM?

High tanß regime

MSSM dedicated Higgs searches at the TeVatron usually takes place in the high tan β regime:

- h/A or H/A are degenerate in mass $\sigma_{\text{prod}} \times 2!$
- coupling to b quarks enhanced by tanβ
- neutral Higgs: $\mathcal{B}(\phi \to b\overline{b}) \approx 90 \%$ and $\mathcal{B}(\phi \to \tau^+ \tau^-) \approx 10 \%$
- charged Higgs: if $m_{H^+} < m_{top}$: $\mathcal{B}(H^+ \to \tau^+ \nu_{\tau}) \approx 1$

If data are compatible with background:

- I. place limits in a model independent way
- 2. place limits into 4 different scenarii

use *FeynHiggs* or *CPSuperH* to get the MSSM cross sections

M. S. Carena, S. Heinemeyer, C. E. M. Wagner, and G. Weiglein, Eur. Phys. J. C 26, 601 (2003).

Best channel: $T_{\mu}T_{h}$

• Multijets estimated from 2 samples:

Best channel: $T_{\mu}T_{h}$

- Multijets estimated from 2 samples:
 - I. non isolated leptons: either one or both

Best channel: $T_{\mu}T_{h}$

- Multijets estimated from 2 samples:
 - I. non isolated leptons: either one or both

2. like sign sample
T⁺

- Multijets estimated from 2 samples:
 - I. non isolated leptons: either one or both

In W MC, τ_h fake is also corrected for

hb signal modelling

 Signal simulation: pythia bg → bH but spectator b quark kinematics reweighted to NLO (MCFM)

Model independent limit, neglecting the width

Fermiophobic Higgs

Fermiophobic Higgs:

- No coupling to fermions
- same W/Z couplings as in SM
- production via WH / ZH

Excludes $m_{Hf} < 112 \text{ GeV/c}^2$

• NMSSM: gg \rightarrow h \rightarrow aa, a \rightarrow $\mu\mu$ or $\tau\tau$

- If $m_a < 2m_\tau$: $h \rightarrow aa \rightarrow \mu\mu\mu\mu$

- Two pairs of collinear muons
- If $m_a > 2m_\tau$: $h \rightarrow aa \rightarrow \mu\mu\tau\tau$
 - Back-to-back μ and τ pairs

Charged Higgs

- If $m_{H^+} < m_{top}$: t \rightarrow H⁺b opens
- H⁺ decays are very different from W⁺ decays:
 - \checkmark high tanβ: B(H⁺→τ v) = I
 - ✓ leptophobic: $B(H^+ \rightarrow c \bar{s}) = I$

- If $m_{H^+} < m_{top}$: t \rightarrow H⁺b opens
- H⁺ decays are very different from W⁺ decays:
 - \checkmark high tanβ: B(H⁺→τ v) = I
 - ✓ leptophobic: $B(H^+ \rightarrow c \bar{s}) = I$
- Changes the different channels contributions: compare all the measured cross sections

"lepton+jets"

MSSM interpretation

arXiv:0908.1811, submitted to PLB

```
method based only on cross
section ratios:
arXiv:0903.5525, submitted to PLB
```

Another strategy: The topological method PRL 102, 191802 (2009)

CPX scenario

CPX benchmark scenario:

- coupling to s-quark dramatically enhanced compare to b
- strangephilic Higgs bosons
- $B(H^+ \rightarrow cs) \approx I$

Lee, Peters, Pilaftsis, and C. Schwanenberger, arXiv:0909.1749

CPX scenario

CPX benchmark scenario:

- coupling to s-quark dramatically enhanced compare to b
- strangephilic Higgs bosons
- $B(H^+ \rightarrow cs) \approx I$

Lee, Peters, Pilaftsis, and C. Schwanenberger, arXiv:0909.1749

