First results on Higgs boson searches (SM + MSSM) and prospects from ATLAS

Johannes Elmsheuser

Ludwig-Maximilians-Universität München, Germany

on behalf of the ATLAS Collaboration

01 June 2011

23rd Rencontres de Blois, Particle Physics and Cosmology

ATLAS DETECTOR AND DATASETS

General purpose detector

Muon:

Johannes Elmsheuser (LMU München)

DATASETS

SEARCH FOR THE HIGGS BOSON

ATLAS measured most of known Standard Model (SM) processes with $\sim 40\,{\rm pb}^{-1}$ of data collected 2010

SM Higgs boson sensitivity will be reached soon

HIGGS PRODUCTIONS AT THE LHC

Gluon fusion:

known at NNLO (theo. uncert. O(15%))

Vector boson fusion:

- known at NLO (theo. uncert. O(5%))
- distinctive experimental signature: 2 forward jets and rapidity gap

Intermediate to high m_H range:

WW and ZZ most sensitive channels

Low to intermediate m_H range:

- γγ: very clean but small BR
- $\tau\tau$: VBF to reduce BG
- bb: huge QCD BG, some potential in assoc. prod.

INTERMEDIATE $m_H: H \to WW^{(*)} \to \ell \nu \, \ell \nu$

- Most sensitive channel in the $m_H = 130-190$ GeV range
- large event yields and clean signature by lack of mass resolution
- Main backgrounds: WW, di-bosons (WZ/ZZ/W γ), W/Z+Jets, Drell-Yan, top, QCD

Common pre-selection:

- 2 isolated high p_T leptons
- suppress low mass resonances with lower bound cut on m_{ℓℓ}
- Z^0 veto $(|m_{\ell\ell} m_Z| > 10 \text{ GeV})$
- *⋢*_T
- transverse plane angle $\Delta \phi_{\ell\ell}$ cut

Exclusive analysis in bins of jet multiplicities:

- 0-jets: optimized for gluon-fusion, purest channels, least affected by top BG
- 1-jet: more affected by top BG
- 2-jets: optimized for VBF (tag jets in opposite hemispheres, rapidity gap), small signal expected

$H \to WW^{(*)} \to \ell \nu \, \ell \nu$ Background estimation

Data driven techniques to estimate each contribution

- Main backgrounds estimated in control regions, extrapolated into signal region
- Cross-contamination of different backgrounds in various control regions taken into account
- WW background from side-bands in m_{ll} and m_T:
 - small $m_H \rightarrow \text{high } m_{\ell \ell}$ WW dominated
 - large $m_H \rightarrow$ low $m_{\ell\ell}$ WW dominated
- Top: estimate jet-veto efficiency in enriched samples with b-tagging
- W+jets:
 - kinematic from control sample with relaxed lepton ID
 - lepton fake probability from independent

jet-trigger sample

• Z+jets: background estimated using ABCD method in $m_{\ell\ell}$ - MET plane

$H \to WW^{(*)} \to \ell \nu \ \ell \nu \ \text{Results}$

- Analysis optimized in each jet-bin and for each mass hypothesis
- final discriminating observable: transverse mass $m_T = \sqrt{(E_T^{\ell\ell} + E_T^{miss})^2 (P_T^{\ell\ell} + P_T^{miss})^2}$

Most sensitive around m_H =160 GeV for SM-like Higgs boson

$H \rightarrow ZZ^* \rightarrow 4$ leptons

Clean unambiguous signature, low background, robust against pileup but small event yield due to low Z^0 leptonic BR, golden channel to measure m_H Simple selection:

- two pairs of opposite sign and same flavor leptons p_T>20 GeV
- consistent with 2 Z⁰ decays
- isolated leptons without significant impact parameter

for $m_H \approx 200$ GeV sensitivity comparable with other channels due to clean signature

HIGH $m_H: H \to ZZ \to \ell\ell(qq/\nu\nu)$

Much less clean topologies compared to 4ℓ channel, but a factor ~27 higher BR (for $\ell\ell qq$) More sensitive than 4ℓ for large m_H when background from W/Z+jets get small Backgrounds:

- Z/W+jets, tt
 control regions from sidebands in m_{jj} and m_{ll} and reversed cuts, backgrounds estimated with MC and normalization checks from control regions
- Background from QCD multi-jets negligible (checked with data-driven techniques with relaxed lepton-ID)
- Di-boson background (ZZ/WW/WZ) estimated from MC

no excess observed in data

Cross section limits at ${\sim}10 \ge \sigma_{SM}$

Johannes Elmsheuser (LMU München)

01/06/2011 10 / 19

Low m_H search: $H \to \gamma \gamma$

- SM prefers light Higgs Boson, $m_H < 158$ GeV
- $H \rightarrow \gamma \gamma$ has small BR (~0.2%), but largest event yield after all cuts at low m_H
- Expect 25 events/fb⁻¹ at √s = 7 TeV (includes all efficiencies)

Backgrounds:

- irreducible: $\gamma\gamma$
- reducible: γ-Jet, Jet-Jet (handles: mass resolution, photon-ID, isolation)

Experimental requirements:

- excellent mass resolution
- precise primary vertex reconstruction
- photon pointing and conversions tracks

$H \to \gamma \gamma$ results

Backgrounds estimated with data-driven techniques:

Exclusion limits:

- m_H =127 GeV: 8 x σ_{SM}
- m_H =116 GeV: 38 x σ_{SM}
- Sensitivity close to current Tevatron limits

$H \to \gamma \gamma$ results, 2011 update

2011:

2011:

2010+2011:

SUSY HIGGS: $h/H/A \rightarrow \tau \tau$

- MSSM Higgs sector: 5 bosons h, H, A, H^+ , H^- with 2 parameters m_A , tan β at LO
- Higgs coupling to b, τ enhanced for high tan $\beta \rightarrow$ Search for: $h \rightarrow \tau \tau (\ell \tau_{had} 3\nu, e\mu 4\nu)$
- Backgrounds: $Z \rightarrow \tau \tau$, $(Z \rightarrow \ell \ell$, W+jets (ℓh) , $t\bar{t}(e\mu)$, QCD)
- Use of data-driven techniques to predict QCD and W+jets BG from same sign data.
- Main background $Z \to \tau \tau$ estimated from MC and shape validated with embedding technique using data

Limits in $(m_A, \tan \beta)$ plane:

extends Tevatron exclusion region

LIGHT *CP*-ODD HIGGS BOSON IN $\mu\mu$ FINAL STATE

- In NMSSM: additional singlet complex field leads to additional CP-even and odd Higgs
- For low CP-odd masses $(m_{a1} < 2m_b)$ lightest CP-even Higgs avoids LEP limits
- Search for direct production in 6-9 GeV and 11-12 GeV mass range, avoiding Υ resonances

Selection:

- two isolated muons with $p_T > 4$ GeV
- Likelihood-ratio selection on primary vertex χ^2 /ndf and calorimetric isolation, PDFs derived from data

No significant excess in data, limits on $\sigma x BR$

15 / 19

COMBINATION FOR SM HIGGS BOSON SEARCH (I)

Combination of SM Higgs boson decay channels for $m_H = 110 - 600$ GeV: $H \rightarrow \gamma\gamma, H \rightarrow ZZ^{(*)} \rightarrow \ell\ell\ell\ell, H \rightarrow ZZ \rightarrow \ell\ell\nu\nu, H \rightarrow ZZ \rightarrow \ell\ell qq, H \rightarrow WW^{(*)} \rightarrow \ell\nu\ell\nu, H \rightarrow WW \rightarrow \ell\nu qq$

Combination:

Individual limits:

 m_{H} = 160 - 170 GeV expected exclusion 2.3 x σ_{SM}

CL_s limits and other experiments:

4th generation exclusion:

(with 4th generation of high mass quarks and leptons with SM-like couplings to the Higgs boson)

Exclusion for $m_H^{4th} = 140 - 185 \text{ GeV}$

SUMMARY AND FUTURE PERSPECTIVES

- ATLAS detector performs very well, but no hint for Higgs at LHC with ${\sim}40~{\rm pb}^{-1}$ yet: inclusive and simple cut-based selections
- 1-3 fb⁻¹ are expected in 2011 (~ 1 fb⁻¹ until June) and more in 2012 \rightarrow ATLAS will be able to make a statement about the SM Higgs boson existence over a large m_H range

with <4 ${\rm fb}^{-1}$ we could exclude down to LEP limit, but hopefully we will not do so!

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/

 $\begin{array}{lll} H \rightarrow \gamma\gamma & \mbox{ATLAS-CONF-2011-071, ATLAS-CONF-2011-025} \\ H \rightarrow ZZ & \mbox{ATLAS-CONF-2011-048, ATLAS-CONF-2011-026} \\ H \rightarrow WW & \mbox{ATLAS-CONF-2011-052, ATLAS-CONF-2011-005} \\ h/H/A \rightarrow \tau\tau & \mbox{ATLAS-CONF-2011-024} \\ CP\mbox{-odd Higgs boson in } \mu\mu & \mbox{ATLAS-CONF-2011-020} \\ \mbox{Charged Higgs } & \mbox{ATLAS-CONF-2011-018, ATLAS-CONF-2011-051} \\ \end{array}$

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/WebHome

SM Higgs Combination ATLAS-HIGG-2011-01-002, CERN-PH-EP-2011-076

BACKUP

HIGH $m_H: H \to WW \to \ell \nu qq$

- Most sensitive channel when m_H >400-500 GeV
- Cross section limits at ${\sim}10\text{--}20 \times \sigma_{SM}$

SUSY HIGGS: $H^{\pm} \rightarrow \tau_h \nu$

Hadronic tau, hadronic W:

- $b\tau_{had}\nu bqq$ ie. 1 τ -jet, 2b, 2q, 2ν
- largely data driven SM estimates
- good agreement so far

Hadronic tau, leptonic W:

- $b\tau_{had}\nu b\ell\nu$ ie. 1 τ -jet, 2b, 1 ℓ , 3 ν
- largely data driven SM estimates
- good agreement so far

SUSY HIGGS: $H^{\pm} \rightarrow \tau_{e/\mu} \nu$

Leptonic τ , hadronic W:

- $b au e/\mu
 u bqq$ ie. 1 ℓ , 2b, 2q, 3u
- SM estimates from MC only
- Distributions of discriminating variables
- fair agreement with SM
- signal alters the distributions
- more luminosity needed to distinguish

Leptonic τ , leptonic W :

- $b au e/\mu
 u b\ell
 u$ ie. 2ℓ , 2b, 4
 u
- similar plots (not shown)
- exclusion plots for 1 ${\rm fb}^{-1}~{\rm MC}$ study

