

Tau physics in ATLAS

23rd Rencontres de Blois Particle Physics and Cosmology

31. May 2011

Susanne Kühn, University of Freiburg

on behalf of the ATLAS collaboration

Outline:

- Tau lepton identification and reconstruction in ATLAS
- Standard Model processes with tau leptons: $Z \rightarrow \tau \tau$ and $W \rightarrow \tau_{_h} \nu$
- Higgs boson search in tau decay channels: MSSM A/H/h $\rightarrow \tau\tau$ and H^+ $\rightarrow \tau\nu$

Processes with tau leptons important for

- "New" physics searches:
 - Higgs boson
 - Supersymmetry
 - Exotic models
- Measurement and understanding of $~Z \rightarrow \tau \tau$
- and $W \to \tau_{_{h}} \nu$ as backgrounds for searches

Tau leptons

Properties: $m_{\tau} = 1.78 \text{ GeV}$ $c\tau = 87 \ \mu\text{m}$ Decay modes: Leptonic (e, $\mu + \nu\nu$) 35.2% Hadronic 1 prong 49.5% Hadronic 3 prong 15.2%

Hadronically decaying tau leptons:

- Tracks of 1 or 3 charged hadrons

- Collimated calorimeter energy depositions

Shower width and composition (shower radius and isolation, EM fraction)

Tau reconstruction and identification in ATLAS

- Hadronically decaying tau candidates seeded by calorimeter jets and tracks matched to candidates
- Distinction between tau leptons and jets: Different identification criteria: cut based, boosted decision tree (BDT), likelihood (LLH)

τ physics in ATLAS: Susanne Kühn

SM processes: $W \rightarrow \tau_h \nu$ observation

Selection for analysis with 546 nb⁻¹:

- $\tau_h + E_T^{miss}$ trigger
- Tight $\tau_{_h}$ with 20 GeV < $p_{_T}$ < 60 GeV
- Veto on leptons with $p_{T} > 5 \text{ GeV}$
- $\Delta \phi$ (jet, E_T^{miss}) > 0.5 rad
- $E_T^{miss} > 30 \text{ GeV}$
- E_{T}^{miss} significance > 6

Transverse mass

Backgrounds: Multijet (estimated from data), $W \rightarrow Iv$, $Z \rightarrow II$, $Z \rightarrow \tau\tau$

ATLAS-CONF-2010-097

Observation:
78 events in data selected
55 ± 12 events observed signal
55 ± 16 events expected signal
from MC

- Main systematic uncertainties: energy scale, MC model

Analysis on full dataset in preparation

→ Observed signal consistent with SM expectation
 → hadronically decaying tau leptons in data established

31.5.2011

SM processes: $Z \rightarrow \tau \tau$ cross section measurement

Measurement of $Z \rightarrow \tau \tau$ cross section with 36 pb⁻¹ combining 4 channels:

 $\tau_{\mu}\tau_{h} \text{ channel, } \tau_{e}\tau_{h} \text{ channel, } \tau_{e}\tau_{\mu} \text{ channel and } \tau_{\mu}\tau_{\mu} \text{ channel}$

Selection for $Z \rightarrow \tau_h \tau_l$:

- Single lepton trigger
- One e p_T > 16 GeV or one μp_T > 15 GeV
- One tight $\tau_h p_T > 20$ GeV, 1 or 3 tracks
- Tight lepton isolation
- $M_T < 50$ GeV and $\Sigma cos \Delta \phi(I, E_T^{miss}) > -0.15$
- Opposite charge of lepton and $\tau_{_h}$

• 35 GeV $< m_{visible} < 75$ GeV

Multijet suppression: Tight lepton isolation

- Sum of transverse momentum of tracks in $\ \Delta R = 0.4$ cone divided by lepton $p_{_T}$

- Sum of energy in calorimeter in $\Delta R = 0.4/0.3$ cone divided by lepton p_T

W+jets suppression:

SM processes: $Z \rightarrow \tau\tau$ cross section

measurement

Multijet background estimation from data:

- ABCD method OS/SS and lepton isolation

EW, tt background subtracted in control regions

W+jets background:

- Normalization in W-dominated control region from data
- Shape from MC

Result for Z $\rightarrow \tau_{h}\tau_{l}$: Visible mass and #track(τ) distributions for $\tau_{u}\tau_{h}$ and $\tau_{e}\tau_{h}$ channels

SM processes: $Z \rightarrow \tau\tau$ cross section

measurement

Selection for $Z \rightarrow \tau_e \tau_\mu$:

• One e $p_T > 15$ GeV and one μ

 $p_T > 10 \text{ GeV}$ of opposite charge

- and tight isolated
- $\Sigma cos \Delta \phi(I, E_T^{miss}) > -0.15$
- $\Sigma E_T + E_T^{miss} < 150 \text{ GeV}$
- 25 GeV < $m_{e\mu}$ < 80 GeV
- Multijet background estimated from data
- 85 events in data selected
- 76 ± 10 events observed signal

Selection for $Z \rightarrow \tau_{\mu}\tau_{\mu}$: • One $\mu p_{\tau} > 15$ GeV and one μ $p_{\tau} > 10$ GeV of opposite charge and isolated • 25 GeV $< m_{\mu\mu} < 65$ GeV • BDT using 4 variables trained to separate $Z \rightarrow \tau_{\mu}\tau_{\mu}$ and $\gamma^*/Z \rightarrow II$

- Multijet background estimated from data
- 90 events in data selected
- 43 ± 10 events observed signal

SM processes: $Z \rightarrow \tau \tau$ cross section measurement

Fiducial cross section: $\sigma^{fid}(Z \to \tau \tau) \times B(\tau \to l \nu \nu, \tau \to l \nu \nu / \tau_{had} \nu) = \frac{N_{obs} - N_{bkg}}{C_Z \cdot \mathcal{L}}$

Total cross section in 66 < m_π < 116 GeV:

- invariant mass of $\sigma(Z \to \tau\tau) \times B(\tau \to l\nu\nu, \tau \to l\nu\nu/\tau_{had}\nu) = \frac{N_{obs} N_{bkg}}{A_7 \cdot C_7 \cdot f}$ 66 < m_{\pi} < 116 GeV:
 - C_7 correction factor taking into account detector effects (e.g Id efficiencies)
 - A₇ geometrical acceptance

- Corrections included for events outside the invariant mass window

Final State	Measured Fiducial Cross-section
$ au_{\mu} au_{h}$	23 ± 2 (stat) ± 3 (syst) ± 1 (lumi) pb
$ au_e au_h$	27 ± 3 (stat) ± 5 (syst) ± 1 (lumi) pb
$ au_e au_\mu$	7.5 ± 1.0 (stat) ± 0.5 (syst) ± 0.3 (lumi) pb
$ au_{\mu} au_{\mu}$	4.5 ± 1.1 (stat) ± 0.6 (syst) ± 0.2 (lumi) pb
Final State	Measured Total Cross-section ($66 < m_{inv} < 116 \text{ GeV}$)
$ au_{\mu} au_{h}$	0.86 ± 0.08 (stat) ± 0.12 (syst) ± 0.03 (lumi) ± 0.003 (theo) nb
$ au_e au_h$	1.14 ± 0.14 (stat) ± 0.20 (syst) ± 0.04 (lumi) ± 0.004 (theo) nb
$ au_e au_\mu$	1.06 ± 0.14 (stat) ± 0.08 (syst) ± 0.04 (lumi) ± 0.004 (theo) nb
$ au_{\mu} au_{\mu}$	$0.96 \pm 0.22(\text{stat}) \pm 0.13(\text{syst}) \pm 0.03(\text{lumi}) \pm 0.002(\text{theo}) \text{ nb}$

Main systematic uncertainties:

- Energy scale $\tau_1 \tau_h 11 \%$
- Tau efficiency $\tau_{I}\tau_{h}$ 8.6%
- Muon efficiency 4%
- Electron efficiency 3-10%
- A₇ 3%
- Luminosity 3.4%

SM processes: $Z \rightarrow \tau \tau$ cross section measurement

Combination:

 \rightarrow Total cross section of $\gamma^*/Z \rightarrow \tau \tau$ in invariant mass of 66 < m_{inv} < 116 GeV in good agreement with theoretical expectation

0.5

τ physics in ATLAS: Susanne Kühn

- MSSM: 2 Higgs doublets
- 5 Higgs bosons $\phi = h, H, A, H^{\pm}$
- m_h^{max} benchmark scenario
- Free parameters: $tan\beta$ and m_A
- Strong coupling to down-type fermions, production α $tan\beta^2$
- Dominant production Direct bb ϕ gg $\rightarrow \phi$

Results for A/H/h $\rightarrow \tau_{\rm h}^{}\tau_{\rm l}^{}$ and

 $A/H/h \rightarrow \tau_e \tau_u$

Main backgrounds:

 $Z \rightarrow \tau \tau$, W+jets, (Z \rightarrow II and Multijets)

Selection for A/H/h $\rightarrow \tau_h \tau_l$ with 36 pb⁻¹:

- Single lepton trigger
- One isolated e $p_T > 20$ GeV or $\mu p_T > 15$ GeV
- One loose $\tau_h p_T > 20$ GeV, 1 or 3 tracks
- Opposite charge of lepton and $\tau_{_h}$
- E_T^{miss} > 20 GeV
- M_T < 30 GeV

Selected events in 36 pb⁻¹:

Data	206
Sum MC expectation without Multijet	218 ± 5
A/H/h (m _A = 120 GeV, tan β = 40)	53.3 ± 0.9

MC W+jets	66 ± 3
MC Z → ττ	117 ± 4

Background estimate for A/H/h $\rightarrow \tau_h \tau_l$: Estimate using same-sign sample from data

 $n_{\text{OS}}^{Bkg}(m_{\text{vis}}) = r_{\text{QCD}} \cdot n_{\text{SS}}^{\text{QCD}}(m_{\text{vis}}) + r_{W+\text{jets}} \cdot n_{\text{SS}}^{W+\text{jets}}(m_{\text{vis}}) + n_{\text{OS}}^{Z+\text{jets}}(m_{\text{vis}}) + n_{\text{OS}}^{\text{other}}(m_{\text{vis}})$

Assumption r_{QCD} = #events (OS) / #events (SS) = 1 (confirmed by MC and data control region)

W+jets factor r_{W+jets} from W control region in data

 $Z \rightarrow \tau \tau$ from MC, checked with embedding technique using data

- Visible mass distribution after all cuts

- Main systematic uncertainties on background yields:

Same-sign background estimate	25%
W+jets background estimate	15%
Tau and jet energy scale	2-32%
Tau efficiency	4%
Signal acceptance	14%

Selection for A/H/h $\rightarrow \tau_{e} \tau_{\mu}$ with 36 pb⁻¹:

- Single electron trigger
- One e $p_T > 20$ GeV and $\mu p_T > 10$ GeV,

opposite charge and tight isolated

- $p_T(e) + p_T(\mu) + E_T^{miss} < 120 \text{ GeV}$
- $\Delta \phi(e, \mu) > 2$ rad
- Discriminating variable: Effective mass

 $M_{\tau\tau}^{\text{effective}} = \sqrt{(p_e + p_\mu + p_{\text{miss}})^2}$

Selected events in 36 pb⁻¹:

Data	70
MC expectation without Multijet	60.4 ± 1.2
Mulitjet	2.1 ± 3.1
A/H/h (m _{β} = 120 GeV, tan = 40)	15.2 ± 0.3

- Main background $Z \rightarrow \tau \tau$ estimated from MC and shape validated with embedding technique using data
- Multijet background estimated from data: ABCD method

 Systematic uncertainties: Electron efficiency ~ 7-9 % MC background cross sections 5-10% Multijet estimate, Mass shape uncertainty

Higgs boson search: A/H/h $\rightarrow \tau \tau$ Limit

- Exclusion limits from analysis of visible/effective mass shape using profile likelihood method
- Cross section, couplings, masses, BR from LHC Higgs XSection WG $\scriptstyle+$ matching between 4-flavor and 5-flavor calculation

Higgs boson search: Charged Higgs H⁺

 \rightarrow Given this sensitivity no limit is extracted, further studies with more data

UNI FREIBURG

estimates

 $- p_{\tau}(\tau_{h}) > 20 \text{ GeV}$

with t \rightarrow H⁺ b and H⁺ \rightarrow $\tau_{h} v$

A) Backgrounds with fake τ jets

 \rightarrow Fit with shape from control region

 \rightarrow Measure fake rate

 \rightarrow Embedding

C) Multijet background

B) Backgrounds with true τ s

Summary

- Identification of hadronically and leptonically decaying tau leptons in ATLAS established
- Total $\gamma^*/Z \to \tau\tau$ cross section in invariant mass of 66 < $m_\pi^{}$ < 116 GeV measured to

 $\sigma_{combined}$ = 0.97 ± 0.07 (stat) ± 0.07 (syst) ± 0.03 (lumi) nb

In good agreement with Standard Model expectation

- Searches for H⁺ ready
- Limit set for H/A/h $\rightarrow \tau\tau,$ no excess observed

Limit in $(tan\beta-m_A)$ -plane, regions excluded beyond Tevatron or LEP exclusions

 \rightarrow Looking forward to results with more data in tau decay channels

- ATLAS-CONF-2011-077 (Tau identification)
- ATLAS-CONF-2010-097 (W $\rightarrow \tau_h \nu$ observation)
- ATLAS-CONF-2011-010 (Z $\rightarrow \tau_{h} \tau_{l}$ observation)
- ATLAS-CONF-2011-045 (Z $\rightarrow \tau \tau \rightarrow e\mu + 4\nu$ observation)
- ATLAS-CONF-2011-051 (H⁺ with hadronic τ decays)
- ATLAS-CONF-2011-018 (H⁺ with leptonic τ decays)
- ATLAS-CONF-2011-024 (MSSM A/H/h $\rightarrow \tau\tau$)

31.5.2011

Hadronic tau decays

In the detector:

- Shower width (shower radius and isolation)
- Particle multiplicity (e.g. number of tracks, clusters)
- Shower composition (e.g. EM fraction)

→ Calorimeter cluster-based variables (e.g. number of clusters, mass), Tracking variables (e.g. track width, track mass), Variables which combine calorimeter and tracking information (e.g. E/p)

Hadronic Tau reconstruction and identification in ATLAS

- Tau jet candidates seeded by calorimeter jets (candidate calorimeter jets reconstructed with AntiKt algorithm, starting from topological clusters)
- Tracks matched to candidate calorimeter jets
- Distinction between tau leptons and jets: Different identification criteria: cut based, boosted decision tree (BDT), likelihood LLH)
- Cuts based on 3 variables

Performance of hadronic tau identification in ATLAS

Performance: Signal Monte Carlo Z $\rightarrow \tau \tau$ and W $\rightarrow \tau_h \upsilon$, Background dijet data events Trained in bins of #prong and p_T

Tight cuts: 30 % signal efficiency Dijet efficiency 2-6%

Efficiency systematics evaluated on Monte Carlo: Looser working point 4-7 % Tighter working point ~10 %

→ Good agreement
 between data and
 Monte Carlo

UNI FREIBURG

$W \rightarrow \tau_h v$ candidate event display

SM processes: $W \rightarrow \tau_h \nu$ observation

Multijet background estimated from data: ABCD method

$$N^{\rm A}_{\rm QCD} = N^{\rm B} N^{\rm C} / N^{\rm D}$$

Data

Observation of $W \rightarrow \tau_h \upsilon$ with 546 nb⁻¹

Data	78
Multijet background	11.1 ± 2.3 (stat.) ± 3.2 (syst.)
EW background	11.8 ± 0.4 (stat.) ± 3.7 (syst.)
Expected signal	55.3 ± 1.4 (stat.) ± 16.1(syst.)
Observed signal	55.1 ± 10.5 (stat.) ± 5.2 (syst.)

Systematic uncertainties:

	$W \rightarrow \tau_{\rm h} v_{\tau}$ (MC expectation)	EW background (MC expectation)	QCD background (data-driven estimate)
Central values [events]	55.3	11.8	11.1
Statistical uncertainty [events]	± 1.4	± 0.4	± 2.3
Systematic uncertainties			
Theoretical cross section	$\pm 5\%$	$\pm 5\%$	-
Luminosity	$\pm 11\%$	$\pm 11\%$	-
Energy scale	$\pm 21\%$	$\pm 14\%$	-
Lepton veto	_	$\pm 19\%$	-
Pile-up	$\pm 1\%$	$\pm 0.2\%$	-
Monte Carlo model	$\pm 16\%$	$\pm 17\%$	-
QCD background estimation	-	-	$\pm 29\%$
Total systematic uncertainty [events]	±16.1	±3.7	± 3.2

UNI FREIBURG

SumCosDeltaPhi

SumCosDeltaPhi: $\sum \cos \Delta \phi = \cos (\phi(\ell) - \phi(E_{\mathrm{T}}^{\mathrm{miss}})) + \cos (\phi(\tau_{\mathrm{h}}) - \phi(E_{\mathrm{T}}^{\mathrm{miss}}))$

SM processes: $Z \rightarrow \tau_h \tau_l$: W+jets normalization

W+jets background shape taken from MC and normalized to data in W enriched region

- inverted W+jets suppression cuts

muon channel

ATLAS Preliminary

	$ au_{\mu} au_{h}$	$ au_e au_h$
Nobs	213	151
$N_{obs} - N_{bkg}$	$164 \pm 16 \pm 4$	$114 \pm 14 \pm 3$
A_Z	$0.117 \pm 0.0002 \pm 0.004$	$0.101 \pm 0.0002 \pm 0.003$
C_Z	$0.21 \pm 0.002 \pm 0.03$	$0.120 \pm 0.002 \pm 0.019$
В	0.2250 ± 0.0009	0.2313 ± 0.0009
L	$35.5 \pm 1.2 \text{ pb}^{-1}$	$35.7 \pm 1.2 \text{ pb}^{-1}$
	$ au_e au_\mu$	$ au_{\mu} au_{\mu}$
Nobs	85	90
$N_{obs} - N_{bkg}$	$76 \pm 10 \pm 1$	$43 \pm 10 \pm 3$
A_Z	$0.114 \pm 0.0004 \pm 0.003$	$0.156 \pm 0.001 \pm 0.011$
C_Z	$0.29 \pm 0.005 \pm 0.02$	$0.27 \pm 0.006 \pm 0.01$
В	0.0620 ± 0.0002	0.0301 ± 0.0001
ſ	$35.5 \pm 1.2 \text{ pb}^{-1}$	$35.5 \pm 1.2 \text{ pb}^{-1}$

SM processes: $Z \rightarrow \tau \tau$ cross section

measurement

Selection for $Z \rightarrow \tau_e \tau_{\mu}$:

- One electron $p_{\tau} > 15$ GeV and one muon $p_{T} > 10 \text{ GeV}$ of opposite charge
- Tight lepton isolation
- $\Sigma cos \Delta \phi(I, E_{T}^{miss}) > -0.15$
- $p_{T,e} + p_{T,\mu} + p_{T,jets} + E_T^{miss} < 150 \text{ GeV}$
- 25 GeV < m_{vlslble} < 80 GeV

- Multijet background estimated from data: ABCD method using OS/SS ratio vs. lepton isolation

- W normalization checked in control region in data

$$\begin{array}{c|c} & & \tau_e \tau_\mu \\ \hline N_{obs} & & 85 \\ N_{obs} - N_{bkg} & & 76 \pm 10 \pm 1 \end{array}$$

\rightarrow Distributions of lepton p_T and visible mass after all cuts beside mass window cut

SM processes: $Z \rightarrow \tau \tau$ cross section measurement

Selection for $Z \rightarrow \tau_{u}\tau_{u}$:

- One isolated muon $p_T > 15 \text{ GeV}$ and one isolated muon $p_T > 10$
- GeV of opposite charge
- 25 GeV $< m_{\mu} < 65$ GeV
- Boosted decision tree to separate $Z \rightarrow \tau_{\mu} \tau_{\mu}$ and $\gamma^*/Z \rightarrow II$

Multijet background estimated from data

BDT input variables:

$$-\Delta \phi(\mu_1, E_T^{miss})$$

$$(p_T(\mu_1) - p_T(\mu_2))$$

 $|d_0(\mu_1)| + |d_0(\mu_2)|$

Distribution of visible mass after all cuts

	$ au_{\mu} au_{\mu}$
N_{obs}	90
$N_{obs} - N_{bkg}$	$43 \pm 10 \pm 3$

τ physics in ATLAS: Susanne Kühn

Higgs boson search: Charged Higgs H⁺

In MSSM if $m(H^+) < m(t)$ dominant production for H^+ in tt with $t \to H^+$ b and $H^+ \to \tau_h v$

ATLAS-CONF-2011-018 ATLAS-CONF-2011-051

- 1. H⁺ with hadronic τ decays: Test of data-driven background estimates
- A) Backgrounds with fake τ jets \rightarrow Measure fake rate

B) Backgrounds with true $\tau s \rightarrow$ Embedding

C) Multijet background \rightarrow Fit with shape from control region

$Z/H \rightarrow \tau \tau$ (lh) in ATLAS

- Lepton identification: muon → muon system and tracking or electron → tracking and electromagnetic calorimeter
- Neutrinos: missing energy \rightarrow 4 π calorimeter with high granularity
- Tau identification: electromagnetic calorimeter and tracking

