

Measurement of the Polarisation of high-P_T(W) Bosons in W+Jets Events at the LHC

Jad Marrouche

on behalf of the CMS collaboration

Accepted by Phys. Rev. Lett. -- arXiv:1104.3829v1 [hep-ex]

1 W Polarisation, Blois Conference Talk, 31.05.2011

- Valence quark content differs, leading to two distinct effects which scale with increasing $P_T(W)$
 - Charge Asymmetry, since N(q⁺) > N(q⁻)
 - Transverse Polarisation, since N(q_L) > N(q_R). Dominant production mechanism at high P_T(W) involves quark-gluon vertex at LHC:

Expect predominantly lefthanded W-bosons at the LHC

2 W Polarisation, Blois Conference Talk, 31.05.2011

- * W-boson rest frame, z-axis aligned with W flight direction.
- **3** W Polarisation, Blois Conference Talk, 31.05.2011

Leading Order generator level expectations for $P_T(W)>100$ GeV:

Polarisation effects contribute to e.g. more E_T^{miss} from W⁺ decays than W⁻ decays

Important to establish and quantify this effect (New Physics searches)

W Polarisation, Blois Conference Talk, 31.05.2011

5 W Polarisation, Blois Conference Talk, 31.05.2011

 Idea is to generate templates of 100% polarised states in L_P, via a reweighting of the Monte Carlo information, and fit these templates to the data observed. Generator Level Example:

6 W Polarisation, Blois Conference Talk, 31.05.2011

Muon Channel Measurement

• Selection Criteria:

- Single muon trigger
- One isolated muon with P_T > 20 GeV
 - Veto events with second muon > 10 GeV (to suppress Z+Jets events)
- No isolated electrons with P_T > 20 GeV
- M_T > 30 GeV (to suppress QCD events)
 - Do not want to place any requirements on E_T^{miss} i.e. neutrino (correlated to polarisation)
- Require < 4 Jets, P_T^{jet} > 20 GeV (to suppress ttbar+Jets events)
- P_T(W) > 50 GeV (to enhance polarisation effects)
- After all selection criteria, find 8626 events in 36 pb⁻¹ of data
- QCD negligible, use background template from MC for Z,ttbar+jets contributions, fixing ratio to W+Jets (S/B expected ~ 26)
- 2 fit parameters: $(f_L f_R)$ and f_0
 - Fit range optimised with respect to leading systematic uncertainties

Muon Channel Result

$\mu:(f_L-f_R)^-$	0.240 ± 0.036 (stat.) ± 0.031 (syst.)
$\mu : f_0^-$	0.183 ± 0.087 (stat.) ± 0.123 (syst.)
Correlation	0.395 (stat.), -0.308 (stat. + syst.)
$\mu:(f_L-f_R)^+$	0.310 ± 0.036 (stat.) ± 0.017 (syst.)
$\mu: f_0^+$	0.171 ± 0.085 (stat.) ± 0.099 (syst.)
Correlation	-0.721 (stat.), -0.269 (stat. + syst.)

8 W Polarisation, Blois Conference Talk, 31.05.2011

Electron Channel Measurement

• Selection Criteria:

- Single electron trigger
- One isolated electron with $P_T > 25$ GeV
 - Veto events with second electron > 15 GeV (to suppress Z+Jets events)
- No isolated muons with $P_T > 20 \text{ GeV}$
- M_T > 50 GeV (to suppress QCD events)
 - Do not want to place any requirements on E_T^{miss} i.e. neutrino (correlated to polarisation)
- Require < 4 Jets, P_T^{jet} > 20 GeV (to suppress ttbar+Jets events)
- $P_T(W) > 50 \text{ GeV}$ (to enhance polarisation effects)
- After all selection criteria, find 5485 events in 36 pb⁻¹ of data
- Same strategy, except QCD non-negligible (S/B ~ 10). Generate data-driven template for QCD L_P shape via cutinversion and include normalisation as extra fit parameter

Electron Channel Result

$e:(f_L - f_R)^-$	0.187 ± 0.069 (stat.) ± 0.066 (syst.)
e : <i>f</i> _0	0.130 ± 0.200 (stat.) ± 0.174 (syst.)
Correlation	-0.204 (stat.), -0.283 (stat. + syst.)
$\mathbf{e}:(f_L-f_R)^+$	0.277 ± 0.060 (stat.) ± 0.050 (syst.)
$e: f_0^+$	$0.240 \pm 0.190 \text{ (stat.) } \pm 0.090 \text{ (syst.)}$
Correlation	-0.295 (stat.), 0.001 (stat. + syst.)

QCD events at $L_P \sim 1$ for both charges (low E_T^{miss} events)

Results between channels agree well

Imperial College London

10 W Polarisation, Blois Conference Talk, 31.05.2011

Systematic Uncertainties

- Leading systematic uncertainties stem from the W+Jets recoil energy scale and resolution uncertainties (by construction of L_P)
 - Uncertainties larger in the electron channel, carry forward when combining channels
 - Most precise measurement is that of the muon channel only

Uncertainty	$(f_L - f_R)^-$	f_0^-	$(f_L - f_R)^+$	f_0^+
		Electron	channel	
Recoil energy scale	±0.042	±0.150	±0.027	±0.078
Recoil resolution	± 0.046	± 0.047	±0.037	±0.039
Electron scale	±0.017	± 0.014	±0.019	± 0.016
Total uncertainty	±0.066	±0.174	±0.050	±0.090
		Muon	channel	
Recoil energy scale	±0.029	±0.123	±0.011	±0.092
Recoil resolution	±0.012	±0.006	±0.012	± 0.004
Muon scale	±0.002	±0.007	± 0.004	± 0.008
Total uncertainty	± 0.031	±0.123	±0.017	±0.099

11 W Polarisation, Blois Conference Talk, 31.05.2011

Contour Representation

• Results in (f_L-f_R) vs f_0 plane for muon channel result:

Measurement shows, for the first time, that in both the electron and muon channels, W-bosons produced in pp collisions are predominantly left-handed

12 W Polarisation, Blois Conference Talk, 31.05.2011

• A comparison of the CMS results with theoretical predictions (Blackhat collaboration, arXiv:1103.5545)

	Muon Fit Result	NLO	ME+PS	LO
(f _L -f _R) ⁻	$0.240 \pm 0.036 \pm 0.031$	0.248	0.222	0.235
f₀⁻	0.183 ± 0.087 ± 0.123	0.193	0.179	0.190
(f _L -f _R)+	$0.310 \pm 0.036 \pm 0.017$	0.308	0.283	0.309
f ₀ +	$0.171 \pm 0.085 \pm 0.099$	0.200	0.187	0.198

Measurement shows, for the first time, that in both the electron and muon channels, W-bosons produced in pp collisions are predominantly left-handed as expected in the Standard Model

13 W Polarisation, Blois Conference Talk, 31.05.2011

- W boson polarization properties unique in the LHC environment
- Predominant left-handedness expected which dictate the Wdecay lepton kinematic properties
- First measurement using LHC data performed and establishes the effect to high precision

• Combined Fit Systematic uncertainties:

Correlations taken into account for the energy scale and resolution

	Combined measurement			
Recoil energy scale	± 0.033	±0.133	±0.016	±0.087
Recoil resolution	± 0.035	±0.023	± 0.027	± 0.015
Electron scale	± 0.013	±0.011	± 0.012	± 0.008
Muon scale	±0.002	± 0.004	± 0.004	± 0.004
Total uncertainty	± 0.050	±0.136	± 0.034	± 0.089

• Combined Fit Results:

Combined: $(f_L - f_R)^-$	0.226 ± 0.031 (stat.) ± 0.050 (syst.)
Combined: f_0^-	0.162 ± 0.078 (stat.) ± 0.136 (syst.)
Correlation	0.304 (stat.), -0.326 (stat. + syst.)
Combined: $(f_L - f_R)^+$	0.300 ± 0.031 (stat.) ± 0.034 (syst.)
Combined: f_0^+	0.192 ± 0.075 (stat.) ± 0.089 (syst.)
Correlation	-0.660 (stat.), -0.121 (stat. + syst.)

15 W Polarisation, Blois Conference Talk, 31.05.2011