

Measurement of the W boson mass at the Fermilab Tevatron

Pierre Pétroff Laboratoire de l'Accélérateur Linéaire Orsay, France

on behalf of the CDF and DØ Collaborations

INSTITUT NATIONAL DE PHYSIQUE NUCLÉAIRE ET DE PHYSIQUE DES PARTICULES

Motivation

W mass is a key parameter in the Standard Model. This model does not predict the value of the W mass, but it predicts this relation between the W mass and other experimental observables:

$$M_W = \sqrt{rac{\pi lpha}{\sqrt{2}G_F}} rac{1}{\sin heta_W \sqrt{1 - \Delta r}}$$

Radiative corrections (Δ **r)** depend on M_t as ~M_t² and on M_H as ~log M_H. They include diagrams like these:

Precise measurements of M_w and M_{top} constrain SM Higgs mass.

For equal contribution to the Higgs mass uncertainty need:

current Tevatron average : $\Delta M_{top} = 1.1 \text{ GeV}$ would need: $\Delta M_W = 7 \text{ MeV}$ (currently have: $\Delta M_W = 23 \text{ MeV}$)

Additional contributions to Δr arise in various extensions to the Standard Model, e.g. in SUSY:

 \rightarrow

 $\Delta M_{W} = 0.006 \Delta M_{top}$

Tevatron

- p pbar collisions at $\sqrt{s} = 1.96 \text{ TeV}$
- up to now ∫ Ldt >10 fb⁻¹ delivered/experiment

- M_W measurement (Run IIa peak lumi ~10³² cm⁻² s⁻¹): CDF 200 pb⁻¹ Phys. Rev. Lett. 99,151801 (2007) Phys. Rev. D 77, 112001 (2008) DØ 1 fb⁻¹ Phys. Rev. Lett. 103, 141801 (2009)
- in progress (Run IIb peak luminosity ~3 10^{32} cm⁻² s⁻¹): CDF 2.4 fb⁻¹ DØ 4.3 fb⁻¹

Signature in the detector

Z→ee/µµ used for calibration/recoil modeling kinematics in transverse plane

Experimental observables

No P_T(W) P_T(W) included Detector Effects added

 $P_T(e)$ most affected by $P_T(W)$ $P_T(v)$ measured by $\not E_T$

$$M_T = \sqrt{2E_T^l E_T (1 - \cos \Delta \phi)}$$

 M_{T} most affected by measurement of missing transverse momentum

Need Monte Carlo simulation to predict shapes of these observables for given mass hypothesis. use **ResBos** [Balazs, Yuan; Phys Rev D56, 5558] + **Photos /WGRAD** for W/Z production and decay, plus **parameterised detector model**.

Momentum and Energy calibration of µ/e

Electrons: energy scale

After having corrected for the effects of the uninstrumented material Use M_Z from LEP and energy spread of electrons in Z decay to constrain α and β . $E_{measured} = \alpha \times E_{LEP} + \beta$ M_W/M_Z is measured in DØ

This corresponds to the dominant systematic uncertainty (by far) in the W mass measurement (but this is really just Z statistics ... more data will reduce it) : * $\Delta M_w = 34 \text{ MeV}$, 100 % correlated between all three observables

Recoil calibration

Final adjustment of free parameters in the recoil model is done *in situ* using balancing in $Z \rightarrow e$ e events and the standard UA2 observables.

Mass Fits

Transverse mass fits $P(\chi^2) = 7\%$

<u>CDF combined results ($m_T(e,\mu)$, $p_T(e,\mu)$, $p_{Tv}(e,\mu)$)</u>

$$m_W = 80413 \pm 34_{stat} \pm 34_{syst}$$
 MeV
= 80413 ± 48 MeV

Combination of all six fits yields $P(\chi^2) = 44\%$

Mass Fits

 $m(W) = 80.401 \pm 0.023 \text{ GeV}$ (stat) $m(W) = 80.400 \pm 0.027 \text{ GeV}$ (stat) $m(W) = 80.402 \pm 0.023 \text{ GeV}$ (stat)

DØ Runll 1fb⁻¹ 80.401 \pm 0.021(stat.) \pm 0.038(syst.) GeV 80.401 \pm 0.043 GeV this new result is the single most precise measurement of the W boson mass to date

Summary of uncertainties

Run	1 ^a ^{1 fb⁻¹} Summary	of unc	ertainti	es
	Source	$\sigma(m_W)$ MeV m_T	$\sigma(m_W) \text{ MeV } p_T^e$	$\sigma(m_W) \operatorname{MeV} E_T$
ertainties	Experimental			
	Electron Energy Scale	34	34	34
	Electron Energy Resolution Model	2	2	3
	Electron Energy Nonlinearity	4	6	7
	W and Z Electron energy	4	4	4
	loss differences (material)			
Ŭ	Recoil Model	6	12	20
	Electron Efficiencies	5	6	5
	Backgrounds	2	5	4
	Experimental Total	35	37	41
E C	W production and			
ste	decay model			
Š	PDF	9	11	14
0)	QED	7	7	9
	Boson p_T	2	5	2
	W model Total	12	14	17
	Total	37	40	44
statistical		23	27	23
total		44	48	50

World average

Ref: Tevatron ElectroWeak Working Group : arXiv:0908.1374 v1 [hep-ex]

- : Combination performed with B.L.U.E. method
 - L. Lyons et al, Nucl. Instrum. Methods in Phys. Res. A 500, 391 (2003).
 - A. Valassi, Nucl.Instrum. Methods in Phys. Res. A 500, 391 (2003).

Higgs mass constraints

The 95% upper limits are 159 GeV withoutTevatron limits and 155 GeV with Tevatron limits

Gfitter groupandarXi : 1012.1331v1 [hep-ph]http://gfitter.desy.de/GSM

in a near future $\Delta M_{top} = 1$ GeV and $\Delta M_{W} = 0.015$ GeV

Challenges in Run IIb

Run IIb instantaneous luminosity results in much higher energy flow from additional collisions which complicates the modeling of detector effects

The impact of these additional collisions necessitates changes in all parts of the parametrized detector models both for CDF and DØ

$W \rightarrow \mu \nu$ transverse mass distribution

from 54 MeV to 16 meV (stat)

	∆m _w ^{stat}	
published (200pb-1)	54 MeV/c ²	
expected (2.3fb-1)	16 MeV/c ²	
fit (2.3fb-1)	16 MeV/c ²	

fit with 2.3 fb⁻¹

	∆m _w ^{stat}	
published (200pb ⁻¹)	48 MeV/c ²	
expected (2.4fb ⁻ⁱ)	14 MeV/c ²	
fit (2.4fb-1)	15 MeV/c ²	

fit with 2.4 fb⁻¹

P. Pétroff Blois 2011

PDF uncertainty: ~15 MeV (new estimation with RESBOS)

 close contacts with theorists :different event generators (PYTHIA, RESBOS, POWHEG) are studied

• Found including EC electrons can reduce the PDF uncertainties by half

 Including Tevatron RunII W asymmetry results in PDF constraints (CT10W set), can reduce the PDF uncertainties by ~ 20%

Work in progress

Summary

- M_W world average is 80.399 ± 0.023 GeV (80.420 ± 0.031 GeV from Tevatron)
- CDF analysis in progress with 2.4 (μv)/2.3 (ve) fb⁻¹
- DØ expected Run IIb (4.3 fb-1) accuracy: ~25 MeV:
 Stat. ~13 MeV + Syst. ~22 MeV
- + Run IIa 1 fb-1, Total Run II (5.3fb-1): ~22MeV

- difficulties resulting from a larger instantaneous luminosity in the RunIIb make the analysis very challenging.

- on the road of 15 MeV uncertainty (CDF and DØ combined)
- with more statistics (10 fb⁻¹ in the can already !) \implies 10 MeV ??
- -- but theoretical errors (PDF) have to be reduced !

Backup Slides

Consistency

Motivation

Detectors

DZero Run II upgrades 2T solenoid inner tracking Preshower extended µ coverage and shielding Trigger, DAQ

> recorded 10 fb⁻¹ data taking efficiency ~ 85%

CDF Run II upgrades 1.7 T solenoid Inner tracking Forward calorimeter extended µ coverage Trigger, DAQ

Electrons: energy scale

After having corrected for the effects of the uninstrumented material: final energy response calibration, using $Z \rightarrow e$ e, the known Z mass value from LEP, and the standard "f_z method":

 $E_{measured} = \alpha \times E_{true} + \beta$

Use energy spread of electrons in Z decay to constrain α and β .

In a nutshell: the f_z observable allows you to split your sample of electrons from $Z \rightarrow e$ e into subsamples of different true energy; this way you can *"scan" the electron energy response as a function of energy*.

$$\begin{split} \mathsf{M}_{Z} \ (\text{measured}) &= \alpha \ . \ \mathsf{M}_{Z}(\text{true}) + \mathsf{f}_{Z} \ . \ \beta + X \ . \ \beta^{2} + \ \dots \ \ \mathsf{If} \ \beta << \mathsf{E}(\mathsf{e1}) + \mathsf{E}(\mathsf{e2}) \\ \text{with} \ \mathsf{f}_{Z} &= (\mathsf{E}(\mathsf{e1}) + \mathsf{E}(\mathsf{e2}))(1 - \cos(\gamma_{\mathsf{ee}}))/\mathsf{M}_{Z} \end{split}$$

 γ_{ee} is the opening angle between the two electrons M_7 (measured) vs. f_7 templates generated for range of α and β values

Result: $\alpha = 1.0111 \pm 0.0043$ $\beta = -0.404 \pm 0.209 \text{ GeV}$ correlation: -0.997

This corresponds to the dominant systematic uncertainty (by far) in the W mass measurement (but this is really just Z statistics ... more data will reduce it) :

 $\Delta m(W) = 34 \text{ MeV}, 100 \%$ correlated between all three observables

Electrons: energy resolution

Electron energy resolution is driven by two components: sampling fluctuations and constant term

Sampling fluctuations are driven by sampling fraction of CAL modules (well known from simulation and testbeam) and by uninstrumented material.

Amount of material has been quantified with good precision (thanks to Z -> ee decay !).

Constant term is extracted from Z -> e e data (essentially fit to observed width of Z peak).

Result:

C = (2.05 \oplus 0.10) %

in excellent agreement with Run II design goal (2%)

remember that Z mass value from LEP was an input to electron energy scale calibration, PDG: $m(Z) = 91.1876 \pm 0.0021$ GeV)

A typical W -> ev event

Three observables:

(plots from published RunIIa 1 fb-1 analysis, Phys. Rev. Lett. 103, 141801 (2009).)

Developed a Fast MC model to generate templates of the 3 observables with different W mass hypotheses. Fit the templates to the Data to extract W mass.

The Fast MC model:

- Event Generator: Resbos+Photons
- Parameterized Detector Model

The Parameterized Detector Model is essential in this analysis!

Electron Model:

 $E_{reco} = R_{EM}(E_{true}) \otimes \sigma_{EM}(E_{true}) + \Delta E_{corr}$ (RunIIb Challenge)

Response and Resolution are calibrated using Z invariant mass of Z->ee Data

ΔE_{corr} Model: Model Update in RunIIb

Recoil Model:

1. Energy Leakage due to FSR

Add Inst.Lumi, SET, Eta dependencies

2. Recoil, Mini-Bias and Zero-Bias Contamination inside electron window

3. Effects due to Zero-Suppression and Baseline-Subtraction

For modeling 2. and 3., we added Inst. Lumi., SET, electron P_T and U_{||} dependencies in a very complicated way, based on a new Wenu FullMC production with Electron and Recoil separated.

 $\vec{u}_T = \vec{u}_T^{\text{Hard}} + \vec{u}_T^{\text{Soft}} + \vec{u}_T^{\text{Elec}} + \vec{u}_T^{\text{FSR}}$

Hard Recoil balancing W or Z boson

Soft Recoil: Zero-Bias and Mini-Bias

Model Update in RunIIb In the same framework of ΔE_{corr} Modeling What has been added to (subtracted from) the electron has to be subtracted from (added to) the Recoil.

Stability checks

Changes in the fitted m_W when the fitting range (m_T observable) is varied.

Stability checks

Instantaneous luminosity (split data into two subsets – high and low inst. luminosity)

Time (i.e. data-taking period)

Projection

Electroweak measurements prefer light Higgs, heavy SUSY

- Some tension in both cases
 - Something else?
 - Need increased precision YES WE CAN !

With > $4fb^{-1}of$ data being analyzed currently : the ΔM_w per experiment is estimated ~ 25 MeV ! combined $\Delta M_w \sim 15 \text{ MeV}$ possible by next year

CDF/DØ combined 10 fb⁻¹ 2011 (?) ∆mW ~ 10 MeV ∆mtop ~ 1GeV

