

W/Z + jets production at the LHC

23rd Rencontres de Blois Particle Physics and Cosmology

May 29 – June 3, 2011

Nicola Venturi

University of Bern

(On behalf of the ATLAS and CMS collaboration)

Motivation

- Test of perturbative QCD
 - comparison with Parton Shower (PS)
 Monte Carlo (Pythia)
 - comparison with matrix element + PS MC (Alpgen, Sherpa, MadGraph)
 - Comparison with NLO predictions (MCFM, Blackhat-Sherpa)
- W/Z + jet is an important background
 - for top
 - for Higgs searches
 - for beyond Standard Model (SUSY) signals

(b) SM Higgs production, where $H^{\mu_{\pm}}$

2010 dataset

- LHC proton-proton collider:
- $E_{cm} = 7 \text{ TeV}$
- Peak luminosity: 2.1 x 10^{32} cm⁻²s⁻¹
- LHC delivered data in 2010: 48 pb⁻¹
- Data used for the analysis:
 ATLAS: 33 pb⁻¹ CMS: 36 pb⁻¹

- Measurement: (V=W,Z)
 - Cross section ratios:
 - Differential cross section:

 $\sigma(V+ \ge (N+1) \text{ jets})/\sigma(V+ \ge N \text{ jets})$ N = 0,...,4 $d\sigma(V+ \ge (N+1) \text{ jets})/dp_{\tau}(N^{\text{th}} \text{ jet})$

N. Venturi, University of Bern

ATLAS and CMS detector

- Inner detector:
 - Pixel and SCT $|\eta| < 2.4$
 - TRT $|\eta| < 2.0$
- Calorimeter:
 - Lar + Tile |η| < 3.2, FCAL |η| < 4.9
- Muon spectrometer:
 - MDT + CSC $|\eta| < 2.7$
 - RPC+TGC |η| < 2.4 (trigger chambers)

- Inner tracker:
 Si Pixel, Si strip |η| < 2.5
- Calorimeter:
 - Tg crystals $|\eta| < 3.0$
 - brass/scintillator $|\eta| < 3.0$
- Muon system: - DT+CSC + RPC |η| < 2.4

ATLAS and CMS detector

W+jets analysis for ATLAS

Z + jets results in back-up slides ATLAS-CONF-2011-042 ATLAS-CONF-2011-060 ATLAS public results: https://twiki.cern.ch/twiki/bin/ view/AtlasPublic

Z+jets analysis for CMS

W + jets results in back-up slides CMS PAS-EWK 10-012 CMS PAS-EWK 10-015 CMS public results: <u>https://twiki.cern.ch/twiki/bin/</u> <u>view/CMSPublic/PhysicsResults</u>

Z + jets event selection

First electron:

- $p_T > 20 \text{ GeV}$
- |η| < 2.5 (No: 1.44<|η|<1.57) |η| < 2.1
- Matches lepton in the trigger
- Isolation
 - Jet selection:
 - Anti- k_t jet algorithm with R = 0.5
 - (using "Particle Flow" objects, no muons)
 - $E_T > 30 \text{ GeV}$, $|\eta| < 2.4$ (tracker acceptance)
 - Pile-up jets and overlap removal:
 - remove off-set energy from underlying event
 ΔR(ele,jet) > 0.3

- First muon:
- p_T > 20 GeV
- Matches lepton in the trigger
- Isolation

- Z event
- -> search second lepton with:
- p_T > 10 GeV
- $|\eta_e|$ as 1.st e , μ : $|\eta_{\mu}| < 2.4$
- 60 GeV < M_{I+I-} < 120 GeV

Z + jets analysis

- Signal extraction:
 - unbinned maximum likelihood fit in M_{\parallel}
- Efficiency corrections:
 - tag and probe from Z/ γ^* + jets data sample
 - factorized as:
 - Reconstruction
 - Identification (N_{jet} dependence due to isolat. cut)
 - Trigger
- Migration among jet bin:
 - Migration matrix R(n_{Reco}, n_{truth}) from MC simulation
 - Single Value Decomposition (SVD) for "unsmearing" N_{iet} distribution

```
N. Venturi, University of Bern
```


Excellent agreement for matrix element plus parton shower MC (MadGraph) and compatible with parton shower alone (Pythia)

W/Z+jet ATLAS+CMS

Berends-Giele scaling

Berends-Giele scaling:

 $C_n = \frac{\sigma_n}{\sigma_{n+1}} \approx \text{constant for } n \ge 1$

- Test scaling by fitting: $C_n = \alpha + \beta n$
- Taking into account correlation between σ_n and migrations between jet bins

Z + b jets

- Event selection:
 - at least one Z (p_T^e > 25 GeV , p_T^μ >20 GeV)
 - at least one jet with $E_T > 25$ GeV, $|\eta| < 2.1$, $\Delta R(l,jet) > 0.5$
 - E_T^{miss} < 40 GeV (tt-bar rejection)
 - b-jet tagging algorithm (secondary vertex)
- Z + b purity: 88% ± 11% (data), 82% ± 4% (MC) - extracted from binned likelihood fit to secondary

vertex mass in data events

σ(Z + b)/σ(Z + j)	Z -> ee (±stat±syst) [%]	Z -> μμ (±stat±syst) [%]
data	5.4 ±1.0 ±1.2	4.6 ±0.8 ±1.1
MadGraph	5.1 ±0.2 ±0.2 ±0.6 (theory)	5.3 ±0.1 ±0.2 ±0.6 (theory)
MCFM	4.3 ±0.5 (theory)	4.7 ±0.5 (theory)

W + jets event selection

Flectron:

- $E_{\tau} > 20 \text{ GeV}$
- $|\eta| < 2.47$ (No: 1.37< $|\eta| < 1.52$) $|\eta| < 2.4$
- Isolation

- Muon:
- $p_{T} > 20 \text{ GeV}$

- Isolation

- Jet selection:
- Anti- k_{+} jet algorithm with R = 0.4 (all particles with τ >10 ps, no W/Z leptons)
- $-p_{T} > 20 \text{ GeV}$, |y| < 2.8
- Pile-up jets and overlap removal:
- use percent of tracks belonging to primary vertex
- $\Delta R(l,jet) > 0.5$ (l=e, μ)

N. Venturi, University of Bern

10⁵ Events / 5 GeV L dt = 36 pbData 2010 \s= 7 TeV W→ev (Alpgen) 10⁴ Njets ≥ 1 10³ MC normalised to data Statistical Errors Only 10^{2} 10 50 100 150 200 250 300Leading Jet p_ [GeV]

W event:

- exactly one lepton
- $E_{T}^{miss} > 25 \text{ GeV}$
- m_τ > 40 GeV

W + jets analysis

- Signal extraction:
- multi-jet (QCD) with data-driven method (template fit in control region)
- electroweak and tt-bar background from MC
- Background:
- low N_{jet}: multi-jet (e), Z-> $\mu\mu$, W-> $\tau\nu$ (μ)
- high \dot{N}_{jet} : tt-bar (e and μ)
- Correction for detector effect:
- Bin-by-bin correction method
- Systematic uncertainty:
- jet energy scale (≈10%)
- luminosity (≈4 %)
- Pile-up removal (≈5%)

W + jets cross section ratio

0.5

- Ratio more robust against systematic uncertainties (lumi, JES)
- Good agreement with predictions at NLO from MCFM (up to W+ 2 jet)
- Good agreement with predictions at NLO (up to W+ 3 jet) from Blackhat-Sherpa (NLO predictions corrected to particle level)
- -> first time W + 3 jets NLO vs LHC data
- Good agreement with predictions
 from multi-parton ME +PS (Alpgen, Sherpa)

• Poor agreement with Pythia (LO + PS) for events with more than 1 jet

• Differential cross section measured for each jet multiplicity separately wrt to jet p_T and $H_T = \Sigma_i p_T^{jet,i} + p_T^{-1} + p_T^{-\nu}$ (characteristic scale of ME+PS MCs)

 Good agreement with NLO MC (MCFM and Blackhat-Sherpa) predictions and ME +PS MC predicitions (Alpgen, Sherpa)

N. Venturi, University of Bern

W/Z+jet ATLAS+CMS

Good agreement with MC ME+PS predictions and with NLO (Blackhat-Sherpa)

Conclusion

• W/Z + jet cross section ratios and differential cross sections measured with the full 2010 data set with the ATLAS and CMS detector

• Cross sections given in restricted kinematical region covered by the detector acceptance and corrected for all detector effects

• Direct measurement of the Berends-Giele scaling, observation of Z+b jet and calculation of the ratio $\sigma(Z+b \text{ jet})/\sigma(Z+\text{ jet})$

 Good agreement with NLO predictions and with matrix element plus parton shower, poor agreement with parton shower alone for more than 1 jet

ATLAS public results: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic</u> CMS public results: <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults</u>

ATLAS: W + jets: ATLAS-CONF-2011-060 CMS: W/Z + jets: CMS PAS-EWK-10-012

- Z + jets : ATLAS-CONF-2011-042
- Z + b jets : CMS PAS EWK-10-015

BACK UP

W + jets results (CMS)

W + jets background estimation

Electron and muon selection like for the Z+ jets analysis

Jet selection: same as for the Z + jets analysis

W selection:

- No second lepton
- M_T > 20 GeV

Signal extraction:

- Unbinned maximum likelihood fit in M_T and n-b tag (to control top)

W + jets cross section ratio

Berends-Giele scaling (CMS)

Z + jets results (ATLAS)

Z + jets background estimation

Z + jets inclusive cross section

Z + jets cross section ratio

Z + jets differential cross section

Z + jets differential cross section

W + jets results (ATLAS)

W + jets inclusive cross section

W + jets cross section ratio

W + jets differential cross sections

Second Jet $p_{_{T}}$ [GeV]

N. Venturi, University of Bern