

Search for high-Mass Higgs Boson at the Tevatron

Geumbong Yu Duke University

on behalf of the CDF and $D \ensuremath{\varnothing}$ Collaborations

23rd Rencontre de Blois

Introduction to High Mass Analysis

2

Focus on $H \rightarrow WW^*$

- Most sensitive to $M(H) > ~125 \text{ GeV}/c^2$
- Consider all Higgs mechanisms
 - gg-fusion, Higgs-Strahlung, vector boson fusion
 - Best sensitivity from dilepton channel

e+jets	m+jets t+jets		all hadronic
еτ	mτ	ττ	τ+jets
em	mm	mτ	m+jets
ee	em	еτ	e+jets

Introduction to High Mass Analysis

3

Focus on $H \rightarrow WW^*$

- Most sensitive to $M(H) > ~125 \text{ GeV}/c^2$
- Consider all Higgs mechanisms
 - gg-fusion, Higgs-Strahlung, vector boson fusion
 - Best sensitivity from dilepton channel

WW* decays:

e+jets	m+jets	t+jets	all hadronic					
еτ	mτ	ττ	τ+jets					
em	mm	mτ	m+jets					
ee	em	еτ	e+jets					

Introduction to High Mass Analysis

Focus on $H \rightarrow WW^*$

- Most sensitive to $M(H) > ~125 \text{ GeV}/c^2$
- Consider all Higgs mechanisms
 - gg-fusion, Higgs-Strahlung, vector boson fusion
 - Best sensitivity from dilepton channel

e+jets

ет Мт

+ jets

n+jets

all hadronic

τ+jets

m+jets

e+jets

Search Channels

- Opposite-sign dilepton
 - H→WW^{*}→l[∓]l[±] $\nu\nu$ + 0/1/2⁺ jets
- Same-sign dilepton
 - ▷ $W/Z+H\rightarrow W/Z+WW^*\rightarrow l^{\pm}l^{\pm}$
- Trilepton
 - W/Z+H→W/Z+WW*→ $l^{\mp}l^{\pm}l^{\pm}+v^{n}+O/1/2^{+}$ jets

- Semileptonic decays
 - ► H→WW*→ $e/\mu+\nu+qq'$
- Hadronic tau decays
 - $e/\mu+\tau_{had}+\nu+O/1/2$ jets

Sub-channels CDF: 12, DØ: 35

 $lepton(l)=e/\mu$

Opposite-sign Dilepton

Multiple SM processes result in opposite-sign dilepton events

CDF: Use Missing E_T to suppress Z/γ^*

DØ: Two rounds of BDT

First to reject Z/γ^*

Second to separate signal from all background

Main background: ojet - WW, 1jet - Z/γ^* , 2+jets - top, low M_{ll} (<16 GeV) - W γ

Opposite-sign Dilepton

Best signal/background discrimination from angle between reconstructed leptons

CDF ojet: incorporates likelihoods based on Matrix Element calculation as additional NN input

0.8

NN Output

0.6

0.4

Same-sign Dilepton

10

- CDF : requires 1⁺ jets additionally
- $D\emptyset$: ee, eµ, µµ channels
- Main Background : charge mis-id from Z/γ^* , fake lepton from W+jets

Same-sign Dilepton

11

- CDF : requires 1⁺ jets additionally
- $D\emptyset$: ee, eµ, µµ channels
- Main Background : charge mis-id from Z/γ^* , fake lepton from W+jets

Same-sign Dilepton

Semileptonic Decays

- Factor of 6 increase in signal versus dileptons
- Huge background from W/Z+jets
- Full reconstruction of the WW events

Hadronic tau lepton (chad)

Systematic Uncertainties

- Dominant experimental uncertainties:
 - Acceptance due to higher order processes: ~10%
 - Jet Energy Scale: 3 ~ 25%
- Dominant theoretical uncertainties:
 - Cross section: $5 \sim 10\%$
- >> gg→H case: 7~33% (Scale), 8~30% (PDF) according to jet multiplicity
- Carefully combine uncertainties
 - Correlated/uncorrelated between analysis channels and experiments

Set the Limit

18

No significant excess observed

Systematic uncertainties are treated as nuisance parameters in the combined signal/background fit to the discriminator outputs from each channel

Expected limits determined from background-only pseudoexperiments incorporating the systematic uncertainties

Set upper limit on Higgs production cross section relative to SM prediction at 95% C.L.

Conclusion

For the first time this spring, CDF and D \emptyset were able to produce single-experiment exclusions for Higgs masses in the neighborhood of 165 GeV/c²

- The combined Tevatron result with data up to 8.2 fb⁻¹ exclude Higgs mass: 158-173 GeV/c²
- Improvements are coming for summer
 - More search channels
 - Enlarged lepton acceptance, and so on..
- Expect the final dataset ~10 fb⁻¹ by this autumn (~9.3 fb⁻¹ as of May)

Limits with various C.L.

Cross sections & Branching ratios

TABLE III: The production cross sections and dec	ay branching fractions for	r the SM Higgs boson assumed	for the combination
--	----------------------------	------------------------------	---------------------

m_H	$\sigma_{gg \rightarrow H}$	σ_{WH}	σ_{ZH}	<i>OVBF</i>	$B(H ightarrow au^+ au^-)$	$B(H \rightarrow W^+W^-)$	$B(H \rightarrow ZZ)$	$B(H \rightarrow \gamma \gamma)$
(GeV/c^2)	(fb)	(fb)	(fb)	(fb)	(%)	(%)	(%)	(%)
130	842.9	112.00	68.5	62.1	5.305	29.43	3.858	0.2182
135	750.8	97.20	60.0	57.5	4.400	39.10	5.319	0.2077
140	670.6	84.60	52.7	53.2	3.472	49.16	6.715	0.1897
145	600.6	73.70	46.3	49.4	2.585	59.15	7.771	0.1653
150	539.1	64.40	40.8	45.8	1.778	68.91	8.143	0.1357
155	484.0	56.20	35.9	42.4	1.057	78.92	7.297	0.09997
160	432.3	48.50	31.4	39.4	0.403	90.48	4.185	0.05365
165	383.7	43.60	28.4	36.6	0.140	95.91	2.216	0.02330
170	344.0	38.50	25.3	34.0	0.093	96.39	2.351	0.01598
175	309.7	34.00	22.5	31.6	0.073	95.81	3.204	0.01236
180	279.2	30.10	20.0	29.4	0.059	93.25	5.937	0.01024
185	252.1	26.90	17.9	27.3	0.046	84.50	14.86	0.008128
190	228.0	24.00	16.1	25.4	0.038	78.70	20.77	0.006774
195	207.2	21.40	14.4	23.7	0.033	75.88	23.66	0.005919
200	189.1	19.10	13.0	22.0	0.029	74.26	25.33	0.005285

23

arXiv:1103.3233 [hep-ex]

Obs. & Exp. Limits

Use Bayesian Limit for Tevatron Combination

CLs method used for double check. Consistent to each other

TABLE V: Ratios of median expected and observed 95% C.L. limit to the SM cross section for the combined CDF and D0 analyses as a function of the Higgs boson mass in GeV/c^2 , obtained with the Bayesian and with the CL_s method.

Bayesian	130 2.18			135 1.72		140 1.46		145 1.31		150 1.09
Expected										
Observed		2.69		2.05		1.65		1.4	2	1.18
CL_s		130		135		140		14	5	150
Expected:		2.14		1.72		1.49	1.49		1.29	
Observed:		2.57		1.98		1.60	0	1.4	2	1.16
Bayesian	155	160	165	170	175	180	185	190	195	200
Expected	0.92	0.68	0.65	0.75	0.85	1.06	1.30	1.59	1.83	2.13
Observed	1.31	0.72	0.54	0.82	1.13	1.04	1.49	2.13	2.20	3.22
CL_s	155	160	165	170	175	180	185	190	195	200
Expected	0.92	0.68	0.64	0.77	0.87	1.05	1.32	1.60	1.82	2.09
Observed	1.28	0.70	0.52	0.80	1.09	1.03	1.49	2.13	2.22	3.13

Expected limits from each channel for 165 GeV/c² Higgs

channel	Lum.	Exp. Limit	channel	Lum.	Exp. Limit
OS - ojet	7.1	1.52	OS - eµ	8.1	1.26
OS - 1jet	7.1	2.13	OS - ee	8.1	2.29
OS - 2jets	7.1	2.74	OS - μμ	8.1	2.23
low M _{ll}	7.1	10.6	lvqq	5.4	5.1
SS	7.1	2.75	SS	5.4	7.0
trilepton	7.1	4.9	$e/\mu + \tau_{had}$	7.3	7.8
$e/\mu + \tau_{had}$	7.1	13.1	$e/\mu+\tau_{had}$ w/ 2 ⁺ jets	4.3	12.3

Wednesday, June 1, 2011
