Precision Measurement of the Solar Neutrino Flux with the Borexino Detector

Szymon Manecki VirginiaTech on behalf of the Borexino Collaboration

Rencontres de Blois, 2011

Borexino

Location

Borexino detector is located in the Apennine mountains, with an access through one of the longest underground tunnels in the world.

Over a kilometer of limestone rock provide pristine muon shielding for the data

Borexino

Principles of graded shielding

1400m of rock (μ)
Cherenkov water detector
Inner PMTs (Rn emanation)
Quenched scintillator
Active scintillator
Fiducial mass (γ)

Fast neutrons

Radio-purity

Contamination	Required	Achieved	Technique		
¹⁴ C/ ¹² C	<5.10-18	2.7·10 ⁻¹⁸	Crude oil / underground src		
²³⁸ U	<10 ⁻¹⁶ g/g	1.6·10 ⁻¹⁷ g/g	Water extraction / Distillation		
²³² Th	<10 ⁻¹⁶ g/g	6.8·10 ⁻¹⁸ g/g	Water extraction / Distillation		
²²² Rn	<1 mBq/t	<1 mBq/t	Materials low in ²²⁶ Ra		
²¹⁰ Po	<1 mBq/t	initially ~1 mBq/t	Distillation, Decay(t _H =138 d)		
⁸⁵ Kr	<0.1 mBq/t	~3 mBq/t	LAKN sparging		

Solar neutrinos

Borexino's major goal: the ⁷Be monochromatic line Total flux of ~ 6.5 x 10¹⁰ /cm²/sec

Phase II also aims for measurement of the CNO lines

Solar neutrinos

Beyond The Standard Model: neutrino oscillations

Resonance

$$\cos(2\theta_V) = \frac{2\sqrt{2G_F n_e E}}{\Delta m^2}$$

• E_v = 1.86 *MeV*

Adiabatic effect:

Before Borexino

Potential for new physics in the low energy oscillation transition region

- Low region only from radiochemistry
- Real-time measurement above 5MeV

- Matter enhanced,
- and transition regions

Signal

- PMTs receive scintillation light from scattered electrons and $\,\gamma\,$ particles
- DAQ triggers when 25 PMTs receive signal within 60ns

<u>PMT time-of-flight</u> distribution used for position reconstruction

Number of hits, or charge used for energy determination

Resolution at 1 MeV: 5% [energy]; ~10-15cm [position]

 Muons rejected by <u>Outer Detector</u> PMTs and <u>Pulse Shape Analysis</u>

Efficiency > 99.992%

Signal Shape

 α/β discrimination method based on the Gatti parameter

Known time profiles of the two species are used as reference in determination of The Gatti parameter, defined as:

$$G = \sum_{i} \left(\frac{\alpha_{i} - \beta_{i}}{\alpha_{i} + \beta_{i}} \right) \cdot f_{i}$$

 α,β - bin contents f - spectral emission content

In the analytical approach it is applied as:

- Soft cut α-like correction
- Statistical subtraction complete α-removal

Calibration

- Understanding detector's response: position, energy, α/β discrimination
- Study Trigger Efficiency and PMT timing alignment
- Determine Fiducial Volume

Above all, preserve radio-purity

Source location based on CCD cameras

Laser CCD image

Туре	γ							β		α	n			
Src.	⁵⁷ Co	¹³⁹ Ce	²⁰³ Hg	⁸⁵ Sr	⁵⁴ Mn	⁶⁵ Zn	⁶⁰ Co	⁴⁰ K	¹⁴ C	²¹⁴ Bi	²¹⁴ Po	n-p	n- ¹² C	n-Fe
MeV	0.122	0.165	0.279	0.514	0.834	1.1	1.1 <i>,</i> 1.3	1.4	0.15	3.2	7.69 (0.84)	2.23	4.94	~7.5

Calibration

Position and Energy Scale tuning

Spectrum

Selection of events

Spectrum

Selection of events

Spectrum

Selection of events

Total of 15 fine cuts remove noise and background events.

⁷Be Results

Day-Night Asymmetry

Neutrinos on their way from the Sun can undergo additional flavor
conversion when traversing Earth's matter at night.
Such daily asymmetry in count rate
is defined asLMALOWis defined asLMA11% - 80% = $A_{dn} = 2 \times \frac{R_N - R_D}{R_N + R_D}$ = < 0.1%</td>

Day-Night Asymmetry

Impact of Recent Results

LOW solution to the solar deficit rejected at 8.5 σ c.l. Hypothesis of no oscillations for 7Be rejected at 4.9 σ

Under MSW-LMA and High Metallicity

$$P_{ee}(^{7}Be) = 0.52_{-0.06}^{+0.07}$$

From the Global Fit $\Delta m^2 = 5.3 \times 10^{-5} eV^2$ $\tan^2 \theta_{12} = 0.46$

Future

- Borexino is entering phase II; purification of the scintillator will hopefully result in lower concentrations of ⁸⁵Kr and ²¹⁰Bi and open new perspectives for the CNO and pep flux measurements
- Further improvements in lowering the systematics will hopefully allow us to reach the ultimate goal of 3% uncertainty
- Measurement of ⁸B flux with a threshold at 2.2MeV requires meticulous understanding of external backgrounds- current Monte-Carlo simulations are very promising
- Borexino has also a possibility of studying oscillations at short distances, which unfortunatley requires sources of highest activities (~MCi ⁵¹Cr, ³⁷Ar, or ⁹⁰Y)
- In the free time Borexino is also ready for Supernovae (with ~90% duty cycle)

The End

Astroparticle and Cosmology Laboratory – Paris, France INFN Laboratori Nazionali del Gran Sasso – Assergi, Italy INFN e Dipartimento di Fisica dell'Università – Genova, Italy INFN e Dipartimento di Fisica dell'Università- Milano, Italy INFN e Dipartimento di Chimica dell'Università - Perugia, Italy Institute for Nuclear Research – Gatchina, Russia Institute of Physics, Jagellonian University – Cracow, Poland Joint Institute for Nuclear Research – Dubna, Russia Kurchatov Institute – Moscow, Russia Max-Planck Institute fuer Kernphysik – Heidelberg, Germany Princeton University – Princeton, NJ, USA Technische Universität – Muenchen, Germany University of Massachusetts at Amherst, MA, USA University of Moscow – Moscow, Russia Virginia Tech – Blacksburg, VA, USA

References

- G. Bellini et al. (Borexino Coll.) arXiv:1104.1816v1 [hepex] 10 Apr 2011, submitted to PRL
- G. Bellini et al. (Borexino Coll.), article in preparation with details about 7Be data analysis, day-night search and solar neutrino oscillations analysis.
- G. Bellini et al. (Borexino Collaboration), paper on calibrations (in preparation)
- (1969); J.N. Bahcall and R. Davis, Science 191, 264