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Borexino
Location

Laboratori Nazionali del Gran Sasso

Borexino detector is located in the Apennine

mountains, with an access through one of the

longest underground tunnels in the world.

Over a kilometer of limestone rock provide

pristine muon shielding for the data



Borexino
Principles of graded shielding

1400m of rock  (μ)

Cherenkov water detector

Inner PMTs (Rn emanation)
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Radio-purity

Contamination Required Achieved Technique

14C/12C <5∙10-18 2.7∙10-18 Crude oil / underground src

238U <10-16 g/g 1.6∙10-17 g/g Water extraction / Distillation

232Th <10-16 g/g 6.8∙10-18 g/g Water extraction / Distillation

222Rn <1 mBq/t <1 mBq/t Materials low in 226Ra

210Po <1 mBq/t initially ~1 mBq/t Distillation, Decay(tH=138 d)

85Kr <0.1 mBq/t ~3 mBq/t LAKN sparging

• ν-e scattering effect

• Indistinguishable from β/γ

backgrounds

• No directional signal

Critical to achieve lowest 

background levels
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Borexino’s major goal: the 7Be monochromatic line
Total flux of ~ 6.5 x 1010 /cm2/sec

Phase II also aims for measurement of the CNO lines

Solar neutrinos
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Beyond The Standard Model: neutrino oscillations

• Resonance

• Eν = 1.86 MeV

• Adiabatic effect:
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Solar neutrinos



Before Borexino

• Matter enhanced, 

• and transition regions
• Low region only from radiochemistry

• Real-time measurement above 5MeV

Potential for new physics in the low energy oscillation transition region



Signal

• PMTs receive scintillation light from scattered electrons and  γ particles

• DAQ triggers when 25 PMTs receive signal within 60ns 

PMT time-of-flight distribution used for 

position reconstruction

Number of hits, or charge used for 

energy determination

Resolution at 1 MeV: 

5% [energy]; ~10-15cm [position]

Cluster timing

• Muons rejected by Outer Detector PMTs and 

Pulse Shape Analysis

Efficiency > 99.992%



Signal Shape
α/β discrimination method based on the Gatti parameter

Known time profiles of the two species 

are used as reference in determination of

The Gatti parameter, defined as:
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β α

In the analytical approach it is applied as:

• Soft cut  

α-like correction

• Statistical subtraction

complete α-removal 

Scintillation Pulse Shape

Gatti Discrimination Parameter
α,β - bin contents

f - spectral emission content



Calibration

• Understanding detector’s response: position, energy, α/β discrimination

• Study Trigger Efficiency and PMT timing alignment

• Determine Fiducial Volume 

Type γ β α n

Src. 57Co 139Ce 203Hg 85Sr 54Mn 65Zn 60Co 40K 14C 214Bi 214Po n-p n-12C n-Fe

MeV 0.122 0.165 0.279 0.514 0.834 1.1
1.1, 
1.3

1.4 0.15 3.2
7.69 

(0.84)
2.23 4.94 ~7.5

Above all, preserve radio-purity

Source location based on CCD cameras



Calibration

Systematics

Livetime 0.1% 0.04%

Scintillator ρ 0.2% 0.05%

Event Selection

Loss
0.3% 0.1%

Position

Reconstruction
6.0%

+1.3%/

-0.5%

Energy Scale 6.0% 2.7%

TOTAL 8.5%
+3.6%/

-3.4%

Improvements in precision:

Position and Energy Scale tuning



Spectrum
Selection of events

• Major cuts :

1) Muons, and

fast 

cosmogenics,

Electronics 

noise

γ from external src.

Raw photoelectron charge spectrum



• Major cuts :

1) Muons, and

fast 

cosmogenics,

Electronics 

noise

2) Foducial

Volume

1/3 active mass

Spectrum
Selection of events

γ from external src.

210Po
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Raw photoelectron charge spectrum



• Major cuts :

1) Muons, and

fast 

cosmogenics,

Electronics 

noise

2) Foducial

Volume

1/3 active mass

3) α- subtraction 

(Gatti

parameter)

Total of 15 fine cuts remove noise and background events.

Spectrum
Selection of events

γ from external src.

210Po – α subtracted

11C
7Be
shoulder

14C

Raw photoelectron charge spectrum



7Be Results

Consistent 
MonteCarlo and Analytical Fits

Measured Rate:
7Be: 46.0 1.5stat

+1.6
-1.5 sys cpd/100t

SSM w/ no 

oscillations,

HMetallicity

74 5theor

MSW-LMA

Prediction 

47.2 3.4

MSW-LMA scenario:
Φ (7Be) = (4.87 0.24) X 109 /cm2/sec

fBe=0.97 0.05stat 0.07syst

Analytical

MonteCarlo



Day-Night Asymmetry
Neutrinos on their way from the Sun can undergo additional flavor 

conversion when traversing Earth’s matter at night.

Such daily asymmetry in count rate 

is defined as

DN
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 211% - 80%  =

LOW

=  < 0.1%

LMA

And = 0.007 0.073stat And = 0.001 0.012stat 0.007sys
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Impact of Recent Results

LOW solution to the solar deficit rejected at 8.5σ c.l.

Hypothesis of no oscillations for 7Be rejected at 4.9 σ

Under MSW-LMA and High Metallicity
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From the Global Fit
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Future

• Borexino is entering phase II; purification of the scintillator will hopefully

result in lower concentrations of 85Kr and 210Bi and open new perspectives 

for the CNO and pep flux measurements

• Further improvements in lowering the systematics will hopefully 

allow us to reach the ultimate goal of 3% uncertainty

• Measurement of 8B flux with a threshold at 2.2MeV requires meticulous

understanding of external backgrounds- current Monte-Carlo simulations

are very promising

• Borexino has also a possibility of studying oscillations at short 

distances, which unfortunatley requires sources of highest activities 

(~MCi 51Cr, 37Ar, or 90Y)

• In the free time Borexino is also ready for Supernovae 

(with ~90% duty cycle)
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