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Recent Results from MiniBooNE

• MiniBooNE

• Neutrino cross-sections

• Quasielastic and elastic scattering

• Hadron production channels

• Neutrino Oscillations

• Antineutrino Oscillations



Motivating MiniBooNE: LSND  

Liquid Scintillator Neutrino Detector

• Stopped π+ beam at Los Alamos LAMPF produces νe, νμ, 

ν̅μ but no ν̅e (due to π－ capture).

• Look for delayed coincidence of positron and neutron capture. 

• Major background non-beam (measured, subtracted)

• 3.8 standard dev. excess above background. 

• Oscillation probability:

ν̄e + p → e
+ + n

Search for ν̅e  appearance via reaction:

P (ν̄µ → ν̄e) = (2.5 ± 0.6stat ± 0.4syst) × 10−3



LSND oscillation signal

• LSND “allowed region” 
shown as band

• KARMEN2 is a similar 
experiment with a slightly 
smaller L/E; they see no 
evidence for oscillations. 
Excluded region is to right 
of curve.

99% CL

90% CL



The Overall Picture

• With only 3 masses, can’t construct 3 Δm2 values of 
different orders of magnitude!

• Current ideas out there:

• An experiment or two is wrong

• Sterile neutrino sector: extra masses and mixing 
angles

LSND ∆m
2

> 0.1eV
2

ν̄µ ↔ ν̄e

Atmos. ∆m
2
≈ 2 × 10−3eV

2
νµ ↔ ν?

Solar ∆m
2
≈ 10−4eV

2
νe ↔ ν?



MiniBooNE:
E898 at Fermilab

• Purpose is to test LSND with:

• Higher energy
• Different beam 
• Different oscillation signature 
• Different systematics

• L=500 meters, E=0.5−1 GeV: same L/E as LSND.



• Oscillation signature is charged-current quasielastic 
scattering:

• Dominant backgrounds to oscillation:

• Intrinsic νe in the beam

• Particle misidentification in detector

Oscillation Signature at 
MiniBooNE

νe + n → e
−

+ p

Neutral current resonance:
∆→ π0 → γγ or ∆→ nγ, mis-ID as e

π → µ → νe in beam

K+
→ π0e−νe, K0

L
→ π0e±νe in beam



• 8 GeV primary protons come from Booster accelerator at 
Fermilab 

• Booster provides about 5 pulses per second, 5×1012 protons per 
1.6 μs pulse under optimum conditions

• Beryllium target, single 174 kA horn

• 50 m decay pipe, 91 cm radius, filled with stagnant air

MiniBooNE Beamline



.

MiniBooNE neutrino detector

• Pure mineral oil
• 800 tons; 40 ft diameter
• Inner volume: 1280 8” PMTs
• Outer veto volume: 240 PMTs



Cherenkov ring characteristics: 
muons

• Muons have 
sharp filled in 
Cherenkov rings.

μ



Cherenkov ring characteristics: 
electrons

• Electrons undergo 
more scattering 
and produce 
“fuzzy” rings.

μ e



Cherenkov ring characteristics:     
π0

• π0 decay to γγ with 
99% branching ratio.

• Photon conversions are 
nearly indistinguishable 
from electrons.

μ
π0

e



MiniBooNE’s track-based 
reconstruction

• A detailed analytic model of extended-track light production 
and propagation in the tank predicts the probability 
distribution for charge and time on each PMT for individual 
muon or electron/photon tracks.

• Prediction based on seven track parameters: vertex (x,y,z), 
time, energy, and direction (θ,φ)⇔(Ux, Uy, Uz).  

• Fitting routine varies parameters to determine 7-vector that 
best predicts the actual hits in a data event

• Particle identification comes from ratios of likelihoods from 
fits to different parent particle hypotheses



Beam/Detector Operation

• Fall 2002 - Jan 2006: Neutrino mode (first oscillation 
analysis). 

• Jan 2006 - 201?: Antineutrino mode 

• (Interrupted by short Fall 2007 - April 2008 neutrino 
running for SciBooNE)

• Present analyses use:

• ≥5.7E20 protons on target for neutrino analyses

• 5.66E20 protons on target for antineutrino analyses

• Over one million neutrino interactions recorded: by far the 
largest data set in this energy range



Neutrino scattering cross-
sections

• To understand the flavor physics of neutrinos (i.e. 
oscillations), it is critical to understand the physics of 
neutrino interactions

• This is a real challenge for most neutrino experiments:

• Broadband beams

• Large backgrounds to most interaction channels

• Nuclear effects (which complicate even the definition 
of the scattering processes!)



Scattering cross-sections
for νμ 

• Lowest energy ( E < 500 MeV ) 
is dominated by CCQE.

• Moderate energies
( 500 MeV < E < 5 GeV ) have 
lots of single pion production.

• High energies ( E > 5 GeV ) are 
completely dominated by deep 
inelastic scattering (DIS).

• Most data over 20 years old, 
and on light targets 
(deuterium).

• Current and future experiments 
use nuclear targets from C to 
Pb; almost no data available. T2K

NOνA CNGSLBNE

BooNEs NuMI, 
MINOS,
Minerνa 

100 MeV

300 GeV

The state of knowledge of νμ 
interactions before the current 

generation of experiments:



Dominant interaction channels 
at MiniBooNE

CCQE (44%)

DIS (0.4%)

 (19%)+CC 
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MiniBooNE has measured cross-
sections for all of these exclusive 

channels, which add up to 89% of the 
total event rate



MiniBooNE cross-section 
measurements

• NC π0

• CC π0

• CC π+

• CC Quasielastic

• NC Elastic

• CC Inclusive

Due to limited time, only

discussing a few topics here.



Charged-current π0 production

μ γ
γ

(x,y,z,t)

s1

s2

• Least common interaction for which we do 
exclusive measurement

• Uniquely, proceeds only via resonance:        
ν+n→μ+Δ→μ+p+π0 

• Challenging 15-parameter, 3-ring fit needed:

• Event vertex: (x,y,z,t)

• Muon: (E,θ,φ)

• 1st photon: (E,θ,φ,s)

• 2nd photon: (E,θ,φ,s)

• Relatively high backgrounds (mostly CCπ+ 
which we measure separately) 



Reconstructed CC π0 signal 
candidates

• Two-photon invariant mass mγγ allows very effective identification of 
events with a π0

• Reconstruction of full event allows observation of Δ resonance  

]2  [GeV/cNreconstructed m
0.8 1 1.2 1.4 1.6 1.8 2

 / 
p.

o.
t.]

-2
/c-1

 [G
eV

N
 m

 n

0

5

10

15

20

25

-1810×

Statistical error

Systematic error

NUANCE

]2  [GeV/cm
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

2
ev

en
ts 

/ p
.o

.t.
 / 

G
eV

/c

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

-1510×

Data

MC prediction
0Observable CC

0Background 
0Background no 

NUANCE is the default 
MiniBooNE neutrino 
interaction generator



Measured observable CCπ0 
cross-section

• The dominant error is π+ charge exchange and absorption in the detector.

• First-ever differential cross-sections on a nuclear target.

• The cross-section is larger than expectation for all energies.

• Phys.Rev.D83:052009,2011
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Additionally, we 
measure 
differential cross-
sections vs:

• θμ
• θπ 

• Eμ
• Eπ



Charged-current π+ production

• Second-largest interaction channel at MiniBooNE

• Can proceed via resonance ν+N → μ+Δ → μ+Nˈ+π+ or by 
coherent nuclear scatter.

• Identified by observation of two stopped muon decays after 
primary event.  Unique signature results in purest exclusive 
sample in MiniBooNE

• Pion reconstruction and μ/π separation are challenging.



Measured observable charged-
current π+ cross-sections

• Differential cross sections (flux 
averaged):

• dσ/dQ2, dσ/dEμ, dσ/dcosθμ, 
dσ/d(Eπ), dσ/dcosθπ:

• Double Differential Cross Sections 

• d2σ/dEμdcosθμ, d2σ/dEπdcosθπ

• Data Q2 shape differs from the 
model 

• Phys.Rev.D83:052007,2011.

16

Neutrino Energy (MeV)
600 800 1000 1200 1400 1600 1800 2000

)2
) (

cm
!

(E
"

0

0.02

0.04

0.06

0.08

0.1

0.12

-3610# Error Bands

MiniBooNE Measurement

Total Uncertainty

MC Prediction

Neutrino Energy (MeV)
600 800 1000 1200 1400 1600 1800 2000

Fr
ac

tio
na

l U
nc

er
ta

in
ty

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5 Error Bands

MiniBooNE Measurement

Total Uncertainty

MC/Measurement

FIG. 20: The σ(Eν) measurement is shown with cumulative
systematic errors. The absolutely normalized Monte Carlo
prediction is shown for comparison. The bottom plot shows
the fractional uncertainties and the ratio of the Monte Carlo
prediction to the measurement.
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FIG. 21: The ∂σ/∂(Q2) measurement is shown with cumu-
lative systematic errors. The absolutely normalized Monte
Carlo prediction is shown for comparison. The bottom plot
shows the fractional uncertainties and the ratio of the Monte
Carlo prediction to the measurement.
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Charged-current quasielastic 
scattering (CCQE)

• Lepton vertex well understood

• Nucleon vertex parametrized with 2 vector form factors 
F1,2 and one axial vector form factor FA

• Use relativistic Fermi gas model of nucleus; F1,2 come 
from electron scattering measurements

• Generally assume dipole form of FA; only parameter is 
axial mass mA extracted from neutrino-deuterium 
scattering experiments: 2002 average 
MA=1.026±0.021 GeV
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CCQE fit results: Q2 dependence

• Data are compared 
(absolutely) with CCQE 
(RFG) model with various 
parameter values

• We prefer larger mA 
compared to D2 data

• Our CCQE cross-section is 
30% above the world- 
averaged CCQE model (red).

• Model with CCQE 
parameters extracted from 
shape-only fit agrees well 
with overall event rate (to 
within normalization error).
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Comparisons to other 
experiments (carbon targets)

• Our data (and SciBooNE) appear to prefer higher MA than NOMAD, but the 
disagreement is not very significant.

• Note that:

• Our errors are systematic-dominated and grow at highest energies

• NOMAD allowed maximum of two tracks in event: in principle, different 
processes may contribute to the two experiments’ samples 

• Possible explanation for what appears to be higher MA: two-nucleon correlations: 
Martini et al., PRC 80, 065501 (2009)
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Neutrino Oscillations: 2007 
result

• Search for nu_e appearance in 
the detector using quasielastic 
scattering candidates

• Sensitivity to LSND-type 
oscillations is strongest in 475 
MeV < E < 1250 MeV range

• Data consistent with 
background in oscillation fit 
range

• Significant excess at lower 
energies: source unknown, 
consistent experimentally with 
either νe or single photon 
production

Oscillation 
analysis region



Antineutrino Oscillations

• LSND was primarily an antineutrino oscillation search; 
need to verify with antineutrinos as well due to potential 
CP-violating explanations

• Analysis has same number of protons on target in 
antineutrino vs. neutrino mode, but...

• Antineutrino oscillation search suffers from lower 
statistics than in neutrino mode due to lower 
production and interaction cross-sections

• Also, considerable neutrino contamination (20±5)% 
in antineutrino event sample



Oscillation Fit Method

• Simultaneous maximum likelihood fit to

• ν̅e CCQE sample

• High statistics ν̅μ CCQE sample 

• νμ CCQE sample constrains many of the uncertainties:

• ν̅e  and ν̅μ flux uncertainties:

• Cross section uncertainties (assume lepton universality)

π
νμ

μ
νe

• Background modes -- estimate before constraint from ν̅μ data (constraint 
changes background by about 1%)

• Systematic error on background ≈10.5% (energy dependent)



Data in antineutrino oscillation 
search

• 475 MeV < E < 1250 MeV:

• 99.1±9.8(syst) expected 
after fit constraints

• 120 observed

• Raw “one-bin” counting 
excess significance is 1.5σ 

• Also see small excess at low 
energy, consistent with 
neutrino mode excess if 
attributed to neutrino 
contamination in ν̅ beam

New! 
5.66E20 POT

475-1250 MeV
oscillation-sensitive region



E>475 MeV

Electron antineutrino 
appearance oscillation 
results

• Results for 5.66E20 POT

• Maximum likelihood fit for simple 
two-neutrino model

• Oscillation hypothesis preferred to 
background-only at 99.4% confidence 
level.

• E>475 avoids question of low-
energy excess in neutrino mode.

• Signal bins only:

• Pχ2(null)= 0.5%

• Pχ2(best fit)= ~10%

•Phys. Rev. Lett. 105, 181801 (2010)

Text

BEST FIT POINT
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Future sensitivity in ν̅ data  

 MiniBooNE has requested a 
total of 1.5×1021 POT in 
antineutrino mode

 Potential 3σ+ significance 
assuming best fit signal

 Systematics limit approaches 
above 2×1021 POT

 Run is underway: total 
0.86×1021 collected as of 
May 2011

E>475MeV fit

Protons on Target

This
result

Data 
collected Goal



New result: disappearance with 
SciBooNE as near detector

• SciBooNE: Scintillating bar detector (originally from K2K) was in the 
BooNE beamline in 2007-08 to measure cross-sections

• Can also be used as a near detector for MiniBooNE

• New result this month: νμ and ν̅μ disappearance searches using both 
detectors

• Mean baseline: 76m (SciBooNE), 520m (MiniBooNE): oscillation 
probabilities differ significantly for 0.5 < Δm2 < 30 eV2

Overview
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SciBooNE constraint reduces 
error at MiniBooNE

• Flux errors become 1-2% level: negligible for this analysis
• Cross-section errors reduced, but still significant due to 

different kinematic acceptance.

MiniBooNE prediction
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SciBooNE-MiniBooNE νμ 
disappearance result

• No evidence for oscillations

• Limit is better than other 
experiments in 10-30 eV2 
region

• Analysis of antineutrino mode is 
underway

90% CL limit

The observed limits from 
both analyses are within 
the ±1σ band.
Another support for 
null oscillation signal.

World strongest limit at  
10 < Δm2 < 30 eV2
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Conclusions
• Cross-sections:

• MiniBooNE has most precise measurements of top five interaction modes on 
carbon; only differential and double-differential cross-sections in some 
modes

• Some disagreements with most common nuclear models

• Oscillation searches

• Significant νe and ν̅e excesses above background are emerging in both 
neutrino mode and antineutrino mode in MiniBooNE

• The two modes do not appear to be consistent with a simple two-flavor 
neutrino model

• Antineutrino results still heavily statistics-limited; MiniBooNE plans to 
accumulate more data until the goal of 1.5×1021 protons on target is 
reached




