

CP violation measurements at LHCb and searches for New Physics

Fred Blanc EPFL

on behalf of the LHCb Collaboration

23rd Rencontres de Blois (Particle Physics and Cosmology) Blois, May 29th - June 3rd, 2011

Introduction

- LHCb physics goals:
 - precision tests of the Standard Model and search for New Physics
- Phenomena under study
 - *CP* violation in B and D decays (this talk)
 - rare decays (see talk by O. Deschamps)

Indirect searches for New Physics

- direct searches for New Physics in the forward region
- Finding New Physics (NP) at low energy
 - heavy NP particles can alter amplitude of loop processes
- New Physics can either:
 - be discovered in precision measurements and then confirmed with direct searches (e.g. @ ATLAS and CMS)
 - or NP particles are first observed at the energy frontier, and their properties then studied in precision measurements at 'low' energy

CP violation measurements

- NP contribution can modify this parameter: $\phi_s = \phi_s^{SM} + \Delta \phi_s^{NP}$

The LHCb detector

- LHCb is a single-arm forward spectrometer at the LHC
 - rapidity range fully instrumented in forward
- Fully instrumented in the forward region $1.9 < \eta < 4.9$
 - excellent vertexy gosolution (esboost)
 - $\rightarrow \sim 50$ fs lifetime resolution
 - long flight length (boost)
 - tracking stations before and after ATm dipole magnet
 - particle identification etectors

 - two ring-imaging Gherenkov detectors
 - calorimetry^{tracking stations be} magnet
 - muon detector squarter of B me produced in LHCb ir point are within LH(

 θ_{b} [rad]

- All subsystems working at design specifications
- LHCb collecting data
 >85% of stable beam time

LHCb detector performance

- Pile up from multiple pp collisions from LHC bunch crossing to be tuned to maximize performance
 - increasing pile up => more b hadrons... ✓

...but more combinatorial background 🗱

- Solution: luminosity "leveling" during LHC spill
 => keep approximately constant pile up over spill lifetime
- Recorded 37pb⁻¹ at 7TeV in 2010, and >160pb⁻¹ since March 2011
- Expect $\approx 1 \, \text{fb}^{-1}$ in 2011

Direct CP violation at LHCb

- Measured direct CP asymmetry in $B \rightarrow K^+ \pi^-$
 - based on 37pb⁻¹ collected in 2010 at 7TeV
- Kinematic and particle identification (PID) variables used for selection optimizing sensitivity to CP violation

Measuring angle γ at LHCb

- Angle γ from interference between tree and penguin decays
- LHCb can measure γ with U-spin related decays $B_d \rightarrow K\pi$, $\pi\pi$, $B_s \rightarrow K\pi$, KK, $\Lambda_b \rightarrow p\pi$, pK (analysis is in preparation)
- LHCb also observes the Cabibbo-suppressed decays $B \rightarrow DK\pi\pi$, which will add 30-40% statistics to the measurements of π

• Expect to measure angle γ with 5-6° accuracy with 2011 data

Towards time-dependent CP measurements

- Ingredients for measuring ϕ_s in $B_s \rightarrow J/\psi \phi$
 - 1. measure B_d , B_u , B_s , and Λ_b lifetimes
 - 2. angular analysis of $B_s \rightarrow J/\psi \phi$ => untagged measurement of ϕ_s
 - 3. flavor tagging calibration
 - 4. measure Δm_s
 - 5. measure $\sin 2\beta$ in $B^0 \rightarrow J/\psi K_S$

and, finally,

6. apply tagged time-dependent angular analysis to $B_s \rightarrow J/\psi \phi$ to measure ϕ_s

Proper time reconstruction

- Lifetime measured for B_d , B_u , B_s , and Λ_b
- Define event selection criteria used in following analyses
- Detailed studies of resolution and acceptance

proper time acceptance uncertainties

9

LHCb-CONF-2011-002

Untagged measurement of ϕ_s

- Extract Γ_s , $\Delta\Gamma_s$, and amplitudes from 4-D fit to angles and proper time $d^4\Gamma$
 - A(t) functions depend on Γ_s , $\Delta\Gamma_s$, and ϕ_s
 - $f_i(\Omega)$ functions depend on transversity angles
- Fit with φ_s fixed at 0 to determine Γ_s and ΔΓ_s
- Likelihood scan in $(\Delta\Gamma_s, \phi_s)$ plane (contour obtained with -0.2 Feldman-Cousins method) -0.4

=> 4-fold ambiguity and weak sensitivity to ϕ_s

 $\frac{\mathrm{d}^{4}\Gamma}{\mathrm{d}t\mathrm{d}\Omega} \xrightarrow{\mathbf{-0.4}} \left[A_{0}(t) \right]^{2} \cdot f_{1}(\Omega) + \left[A_{\parallel}(t) \right]^{2} \cdot f_{2}(\Omega) + \left[A_{\perp}(t) \right]^{2} \cdot f_{3}(\Omega) + \Im \left(A_{\parallel}^{*}(t)A_{\perp}(t) \right) \cdot f_{4}(\Omega) + \left[A_{\perp}(t) \right]^{2} \cdot f_{3}(\Omega) + \Im \left(A_{\parallel}^{*}(t)A_{\perp}(t) \right) \cdot f_{4}(\Omega) + \left[A_{\parallel}(t) \right]^{2} \cdot f_{3}(\Omega) + \Im \left(A_{\parallel}^{*}(t)A_{\perp}(t) \right) \cdot f_{4}(\Omega) + \left[A_{\parallel}(t) \right]^{2} \cdot f_{4}$

Measurement of B_s oscillations

ϕ_s from $B_s \rightarrow J/\psi \phi$

- Tagged time-dependent fit to extract ϕ_s in $B_s \rightarrow J/\psi \phi$ decays
- First LHCb constraint on ϕ_s using 36pb⁻¹ (2010 dataset)
- LHCb results: $\phi_s \in [-2.7, -0.5]$ @ 68% C.L. $\phi_s \in [-3.5, +0.2]$ @ 95% C.L.
- Confidence contour from Feldman-Cousins method
 - contour includes systematics on tagging and Δm_s ; other systematics are negligible
- 2-fold ambiguity remaining
- Prospect for 1 fb⁻¹ $\rightarrow \sigma(\phi_s) \approx 0.13$ rad

Projected 1fb⁻¹ error

14

First observation of $B_s \rightarrow J/\psi f_0(980)$

- $B_s \rightarrow J/\psi f_0(980)$ has been observed at LHCb with 33pb⁻¹
- 111 \pm 14 signal events (12.8 σ)
- Measure ratio to $B_s \rightarrow J/\psi \phi$

$$R_{f_0/\phi} \equiv \frac{\Gamma(B_s^0 \to J/\psi f_0, \ f_0 \to \pi^+\pi^-)}{\Gamma(B_s^0 \to J/\psi \phi, \ \phi \to K^+K^-)} = 0.252^{+0.046+0.027}_{-0.032-0.033}$$

R. Aaij et. al. (LHCb Collaboration) Phys. Lett. B 698 (2011) 115

- Important mode to study:
 - A. $P \rightarrow PV$ decay with CP-odd final state

 $\Rightarrow \phi_s$ without angular analysis

B. s-wave background to $B_s \rightarrow J/\psi \phi$; allows to remove remaining 2-fold ambiguity

ϕ_s in charmless B_s decays

- ϕ_s will be measured in $B_s \rightarrow \phi \phi$ decays (in preparation)
- ϕ_s can also be measured with other penguin decays
- $B_s \rightarrow K^{*0} K^{*0}$ is Events / (15 MeV/c² 20 observed at LHCb LHCb 18 Preliminary with 35pb⁻¹ 16 $\sqrt{s} = 7 \text{ TeV}$ 14 $L = 35.4 \text{ pb}^{-1}$ • $N_{sig} = 34.0 \pm 7.4$ 12 $(7\sigma \text{ significance})$ 10 5000 5200 5400 5600 5800 m(K⁺π⁻K⁻π⁺) (MeV/c²) Branching fraction obtained by normalizing to $B^0 \rightarrow J/\psi K^{*0}$ $\mathcal{B}(B_s^0 \to K^{*0}\overline{K}^{*0}) = (1.95 \pm 0.47(\text{stat.}) \pm 0.51(\text{syst.}) \pm 0.29(f_d/f_s)) \times 10^{-5}$

Conclusion

- 2010 dataset (≈36pb⁻¹) was used to demonstrate the excellent LHCb performance for
 - tagging,
 - angular, and
 - time-dependent analyses
- LHCb has obtained its first CP violation measurements
- Several new decay modes are being discovered
- CP violation measurements at LHCb on known and new decay modes will soon contribute significantly to constraining the Standard Model
- Expect world best measurements of ϕ_s and γ with 2011 dataset