

Recent Photon and Jet QCD Results from the Tevatron

Prompt diphoton production (DØ, CDF) High transverse momentum jets (CDF) Multiple parton interactions (DØ)

> Susan Blessing Florida State University

For the DØ and CDF Collaborations

23rd Rencontres de Blois June 1, 2011

Prompt diphoton production (DØ and CDF)

Prompt photons are produced directly from the hard-scattering or fragmentation process

as opposed to photons from $\pi^{0},\,\eta,\,K_{s}{}^{0}$ decay

At a much smaller rate, < 1%, photon pairs may come from Higgs decay, graviton decay (extra dimensions), neutralino decay (SUSY)

 $gg \rightarrow H \rightarrow \gamma \gamma$ is the main discovery channel for Higgs up to about 130 GeV at LHC

QCD $\gamma\gamma$ and H $\rightarrow \gamma\gamma$ have different dominant initial states – qq vs. gg Leads to differences in kinematic distributions

Prompt diphoton production

Two primary production mechanisms direct and fragmentation

Direct

At LO – qq scattering only At NLO – virtual corrections, real emissions gg scattering – $O(\alpha_s^2)$ suppression but large gluon PDF makes for a significant contribution at low M_{yy}

Prompt diphoton production

ragmentation

Enhances cross section in some kinematic regions depends on photon selections Collinear singularities are factored out into fragmentation functions $D_{\gamma/q}$

Fragmentation contribution is very uncertain and can be suppressed experimentally by requiring

isolated photons

• $p_T^{\gamma\gamma} < M_{\gamma\gamma}$ [PRD 76, 013009 (2007)]

Direct *yy production*

(1)

-@~~

<u>‱⊢⊗</u>∕∕∕

(g)

 \overline{m}

000

(j)

(d)

Single-photon

fragmentation

(a)

(k)

4000

7000

.000

(I)

(f)

-120

DIPHOX [EPJ C16, 311 (2000)] Fixed-order NLO calculation (gg $\rightarrow \gamma\gamma$ is at LO) No soft gluon resummation Single photon fragmentation at NLO Diagrams a, b, c, d, e, f, g, h

Event selection

- DØ 4.2 fb⁻¹ [PLB 690, 108 (2010)]
 - Two photons, $p_T > 20$, 21 GeV, $|\eta_y| < 0.9$
 - Separated by $\Delta R_{\gamma\gamma} > 0.4$
 - $p_T^{\gamma\gamma} < M_{\gamma\gamma}$ (suppress fragmentation)
 - EM fraction > 0.97
 - Isolated, calorimeter and tracker
 - Photon neural net

(cal, preshower, tracking info)

CDF – 5.36 fb⁻¹ [Preliminary]

- Two photons, $E_T > 15,17$ GeV, $|y_v| < 1$
- Separated by $\Delta R_{yy} > 0.4$
- Isolated, calorimeter and tracker
- With and without $p_T^{\gamma\gamma} < M_{\gamma\gamma}$

• large and small $\Delta \phi_{\gamma\gamma}$ (not shown here)

- Typical diphoton purity ~70%
- Main backgrounds γ + jet (~15%) dijet (~15%) $Z/\gamma^* \rightarrow ee (\sim 2\%)$

Photon neural net output

Good discrimination – EM jets/photons Good agreement – data/γ MC

Measurements

Sensitive to energy scale of the interaction and new physics

Double differential cross section shown

 $\frac{d^{2}\sigma}{dM_{\gamma\gamma} dp_{T}^{\gamma\gamma}} \begin{cases} 30 \le M_{\gamma\gamma} < 50 \text{ GeV} \\ 50 \le M_{\gamma\gamma} < 80 \text{ GeV} \\ 80 \le M_{\gamma\gamma} < 350 \text{ GeV} \end{cases}$

Both collaborations have measured additional single differential cross sections. DØ has measured two additional double differential cross sections.

Effect of $p_T^{\gamma\gamma} < M_{\gamma\gamma} - CDF$

Data spectrum harder than predicted Need NNLO?

Discrepancy with DIPHOX and PYTHIA at small $p_T^{\gamma\gamma}$ indicates soft gluon resummation is needed

Confirmation of $p_T^{\gamma\gamma}$ results with angular variable

DØ and CDF results are complementary in terms of considered phase space and cross sections With similar selections, conclusions are similar

dσ

 $d\Delta \phi_{\gamma\gamma}$

 $\frac{d^2\sigma}{dM_{_{\gamma\gamma}}\,dp_{_{T}}^{_{\gamma\gamma}}} - D \emptyset$

Cross section underestimated as $p_{\tau}^{\gamma\gamma}$ increases

Mass region has significant contribution from $gg \rightarrow \gamma\gamma$

Improved agreement with RESBOS as $M\gamma\gamma$ increases also seen for $\Delta\phi_{\gamma\gamma}$, $|\cos\theta^*|$

Agreement is much better

Susan Blessing

Good agreement with RESBOS at high $M_{\gamma\gamma}$

Mass region important for Higgs and NP searches

High p_T jets – CDF

Study the mass of high p_{T} jets Study the energy flow within jets

Tune parton showering mechanisms Background to heavy resonance searches

Mass calculated using the standard E-scheme

- 4-vector sum over towers in a jet
- Gives (E, p_x , p_y , p_z)

Reconstruct jets with midpoint cone algorithm • R = 0.4, 0.7, 1.0

Require

• ≥ **1** jet with p_T > 400 GeV, 0.1 < |y_{iet}| < 0.7

2108 events

R = 0.7

- Reject boosted top quark events
 - p_T^{jet2} > 100 GeV
 - m_{iet2} < 100 GeV

 $(E,p_{x'}p_{y'}p_{z})$

6 fb⁻¹

Mass distributions

Comparison of m_{jet1} distributions for R = 0.4, 0.7, and 1.0

Cone size plays a clear role in limiting high mass behavior

Jet mass corrected for multiple interactions and the effect of the p_T selection on the jet mass distribution

Mass, R, PYTHIA comparison

Good agreement between data and PYTHIA prediction over 70 < m_{iet1} < 400 GeV

Angularity

Sensitive to the degree of symmetry in the energy deposition within a jet Distinguish between jets originating from regular QCD production of light quarks and gluons from boosted heavy particle decay

$$\pi_{a}(\mathsf{R},\mathsf{p}_{\mathsf{T}}) = \frac{1}{\mathsf{m}_{\mathsf{jet}}} \sum_{i \in \mathsf{jet}} \omega_{i} \sin^{a} \theta_{i} \left[1 - \cos \theta_{i}\right]^{1-a} \approx \frac{2^{a-1}}{\mathsf{m}_{\mathsf{jet}}} \sum_{i \in \mathsf{jet}} \omega_{i} \theta_{i}^{2-a}$$

Describes a class of jet shapes IR safe for $a \le 2$, a = -2 here Sum over calorimeter towers in jet ω_i – energy of a jet tower (particle)

Large = energy at edge of cone ≈ QCD-jet-like Small = energy at axis ≈ boosted heavy particle

QCD jet τ_{-2} can also be small, but has a longer tail

Data and prediction agree Similar results for R = 0.4and for 90 < m_{iet1} < 100 GeV

Multiple parton interactions – DØ

1 fb⁻¹ PRD 81, 052012 (2010) PRD 83, 052008 (2011)

More than one parton-parton interaction from a single nucleon-nucleon collision DP – double parton (two interactions) TP – triple parton (three interactions)

Rates depend on PDFs and spatial distribution of partons within nucleon

New and complementary information about proton structure

- spatial distribution of partons in proton
- parton-parton correlations

Background to rare processes with multi-jet final states

- SM Higgs
- SUSY

 $\sigma_{\rm DP} = \frac{\sigma_{\rm A} \, \sigma_{\rm B}}{\sigma_{\rm eff}}$

 σ_{eff} – describes the parton spatial density distribution

 $\begin{array}{l} \text{Uniform distribution} - \sigma_{\text{eff}} \text{ large, } \sigma_{\text{DP}} \text{ small} \\ \text{Clumpy distribution} - \sigma_{\text{eff}} \text{ small, } \sigma_{\text{DP}} \text{ large} \end{array}$

Topology

Use γ + 2jet and γ + 3jet events Signal – 1st interaction produces γ + jet 2nd produces jet + jet

Binning in p_T^{jet2} p_T scale of 2nd interaction

Susan Blessing

 $50 < p_T^{\gamma} < 90 \text{ GeV}^*$, isolated $|\eta^{\gamma}_{det}| < 1, 1.5 < |\eta^{\gamma}_{det}| < 2.5$ $p_T^{jet1} > 30 \text{ GeV}$ $p_T^{jet2/3} > 15 \text{ GeV}$ $|\eta^{jet}| < 3.5$ $\not{E}_T < 0.7 p_T^{\gamma}$ Single primary vertex All pairs of objects $\Delta R > 0.9$ * 60 < $p_T^{\gamma} < 80 \text{ GeV}$ (2010 analysis)

18

Discriminating variables

1/N dN/d AS

 $\Delta S = \Delta \phi(p_T^{\gamma, jet1}, p_T^{jet2, jet3})$ (\gamma, jet1) and (jet2, jet3) are p_-balanced pairs

SP events peak at π DP events flat

Since some jet1s are radiated, actually get bump at π for DP (jet1 doesn't go with the γ)

DP results

Summary

Measurements of photon pair production show none of the predictions is able to describe the data over the full kinematic region.

 $M_{\gamma\gamma}$ is best described, for masses above 80 GeV DØ finds the best agreement with RESBOS CDF with PYTHIA $\gamma\gamma$ + γ jet

Data and PYTHIA predictions for high-p_T jet mass production and shapes agree, especially at high m_{jet}

Multiple parton interactions play a significant role and need to be included in simulations

Measurements with γ + 2jets and γ + 3jets can be used to improve/constrain models

Many more results at <u>http://www-d0.fnal.gov/Run2Physics/qcd/</u> <u>http://www-cdf.fnal.gov/physics/new/qcd/QCD.html</u>

Corrections to particle level

Most Run II jet results

- data are corrected to particle level including effects of underlying events and jet energy scale
- NLO theory is corrected to particle level using parton shower MC
- particle-level measurements are compared to particle-level NLO theory

Diphoton motivation

Many kinematic variables behave differently for QCD diphoton production and H $\rightarrow \gamma\gamma$ events; different dominant initial states – qq vs gg

PRD76, 01309 (2007)

Use difference between diphotons from QCD and Higgs to improve sensitivity

Diphoton theory predictions DØ

- RESBOS and DIPHOX
 - CTEQ6.6M
 - all scales set to $M_{\gamma\gamma}$
 - renormalization, fragmentation, factorization
 - corrected for non-perturbative effects
 - underlying events, hadronization
 - using PYTHIA and two UE models
 - Tune A and S0
 - corrections are 4-5%, almost stable across bins of all observables (two tunes agree within 0.5%)
- B 🏂

- PYTHIA v6.420
 - Tune A with CTEQ5L
- Uncertainties
 - PDF: 3-6%
 - Scale variation: 10-20%
 - factor of 2 up and down

Additional diphoton cross sections

Single differential cross section – CDF and DØ	<u>d</u> σ	dσ	
	$d(\cos\theta^*)$	d cosθ*	

Single differential cross sections – CDF

dσ	dσ	do	dσ	dσ	do	do
$\text{d}\Delta\eta_{\gamma\gamma}$	$d\eta_{\gamma\gamma}$	$d\Delta R_{\gamma\gamma}$	$dlog_{10}(p_T^{\gamma\gamma}/M)$	$d\Delta y_{\gamma\gamma}/2$	dy _{boost}	$d(E_{T2}/E_{T1})$
dσ	dσ					
d(E _T)	dη					

Double differential cross sections – DØ

$d^2\sigma$	d²ơ		
$dM_{\gamma\gamma}\Delta\phi_{\gamma\gamma}$	$dM_{\gamma\gamma} d \cos\theta^* $		

Cannot compare DØ and CDF measurements directly DØ requires $p_T^{\gamma\gamma} < M_{\gamma\gamma}$ CDF does not

 θ^* = polar angle in Collins-Soper frame

CDF yjet diagrams

gg – DØ and Sherpa

SHERPA calculations (ME with up to 4 partons in the final state + PS) describe DØ data well

(F. Siegert, http://fsiegert.web.cern.ch/fsiegert/talks/2010-05-CMS-Hgg.pdf)

Angularity – QCD / Z comparison

FIG. 4 (color online). The angularity distribution for QCD (red-dashed curve) and longitudinal Z (black-solid curve) jets obtained from MADGRAPH. Both distributions are normalized to the same area.

Susan Blessing

 $z = \frac{\min(p_{T1}, p_{T2})}{p_T}$

Planar flow

Distinguish planar from linear configurations Zero for linear shapes and 1 for isotropic energy distributions

$$P_{f} = 4 \frac{\det(I_{\omega})}{tr(I_{\omega})^{2}} = \frac{4\lambda_{1}\lambda_{2}}{(\lambda_{1} + \lambda_{2})^{2}} \qquad I_{\omega}^{kl} = \frac{1}{m_{jet}} \sum_{i \in jet} \omega_{i} \frac{p_{i,k}}{\omega_{i}} \frac{p_{i,l}}{\omega_{i}}$$

$$p_{i,k} - k^{th} \text{ component of } p_{T} \text{ relative to the jet momentum axis}$$

$$\omega_{i} - \text{ energy of a jet tower (particle)}$$

Monotonically increasing, but data steeper

IR safe

Indeper

Agreement $\lambda_{1,2}$ – eigen

le.

ne

mat

Planar flow – QCD / top jets comparison

MPI

Ideal Jet from dijet lost Radiated jet observed

MPI Data/MC

Data compared with MC reweighted to reproduce p_T^{γ} distribution in data for 15 < p_T^{jet2} < 30 GeV

MPI differential cross sections

