

STRUCTURE FUNCTIONS from HERA to LHC

Julia Grebenyuk

on behalf of ZEUS and H1 collaborations

Outline

- Structure of the proton
- HERAPDF
- Recent results
- Comparison to data

Probe of proton structure at HERA

HERA was an ep collider at DESY (Hamburg, Germany)

- Provides unique data to study the proton structure
- 2 general purpose detectors: H1 and ZEUS
- E_=27.5 GeV, E_=920 GeV
- 15 years of successful data taking, 1 fb⁻¹ data collected
- 2 periods of running: HERAI and HERAII

T. J. LeCompte's talk on Monday:

'HERA revolutionized our knowledge of parton densities'

Deep Inelastic Scattering (DIS) kinematics:

- x Bjorken scaling variable
- Q² virtuality of the exchanged boson
- y inelasticity
- s centre-of-mass energy

HERA and LHC

LHC: pp-collisions at 7,10,14 TeV

Predictions for the LHC – use of factorisation:

Precision of parton densities (PDFs) is essential

HERA data are unique

access to very low-x, low-Q² , high-x and high-Q² regions

Proton structure

Deep inelastic scattering NEUTRAL CURRENT (NC) cross section can be written via *structure functions* F_2 , F_1 and xF_3 :

$$\frac{\mathrm{d}^2 \sigma_{NC}^{e^+ p}}{\mathrm{d}x \mathrm{d}Q^2} = \frac{2\pi \alpha^2 Y_+}{xQ^4} \left(F_2 - \frac{y^2}{Y_+} F_L \pm \frac{Y_-}{Y_+} xF_3 \right) , \quad Y_\pm = 1 \pm (1-y)^2$$

Proton structure functions

 F_2 – dominant term, sensitive to quark and gluon

 F_{I} – sensitive to gluon

 XF_{3} – sensitive to valence quarks

CHARGE CURRENT (CC) data allow to get flavour information

 $\sigma_{e^+p}^{CC} \sim x(\bar{u} + \bar{c}) + x(1 - y)^2(d + s)$ $\sigma_{e^-p}^{CC} \sim x(u + c) + x(1 - y)^2(\bar{d} + \bar{s})$

HERAPDF

Input to PDF fits – cross sections (HERA data: combined ZEUS and H1)

Many groups are doing PDF fits of global data coming from many experiments: MSTW, CTEQ, NNPDF, ABKM, GJR

Group at DESY: HERAPDF

- Use only HERA data, combined ZEUS and H1 results
- Fix α_s , strange fraction, heavy quark masses in standard fit
- Use simple parametrisation with minimum number of parameters
- Uncertainty: experimental, model and parametrisation

HERA data sets

HERAPDFI.5

HERAPDF1.0 - HERAI data

HERAPDF1.5 – HERAI and HERAII high-Q² data

Xg, xu, xu, xS = xU + xD (xU = xu(+xc), xD = xd + xs(+xb))

Including HERAII data reduces the uncertainty, especially at high x!

HERAPDFI.5 NNLO

NLO and NNLO HERAPDF available for LHC predictions!

Differences at high-x due mainly to more *flexible parametrisation* (extra term for gluon and valence) used when fitting HERAI+HERAII data

HERAPDF fit including jet data: HERAPDF1.6

In standard fit - fixed α_{s} , in this fit α_{s} left free At low-x α_{s} and xg(x) are strongly correlated

α_s(M₂) 9

Including charm data in the fit

Heavy quark treatment in PDFs is important, many different existing schemes Charm mass variation $1.4 < m_c < 1.65$ gives 5% uncertainty on W cross section

HERA charm data allow to constrain charm mass

Optimal charm mass determined with HERA data reduces the uncertainty of cross section prediction!

HERAPDF for CC and NC data

Charge Current

H1 and ZEUS

$\sigma^{\pm}_{r,NC}(x,Q^2)$ August 2010 $\sigma_{r,CC}^{-}(x,Q^{2})$ $O^2 = 500 \text{ GeV}^2$ $Q^2 = 1000 \text{ GeV}^2$ $Q^2 = 1500 \text{ GeV}^2$ $O^2 = 300 \text{ GeV}^2$ August 2010 • HERA I+II NC e⁺p (prel.) ----- HERAPDF1.5 e⁺p HERAPDF1.5 ep HERA I+II NC ep (prel.) (x300.0) 0.02 0.032 (x170.0) 10² 0.5 (x90.0)HERA Inclusive Working Group 0 0.08 (x50.0) $Q^2 = 2000 \text{ GeV}^2$ $Q^2 = 3000 \text{ GeV}^2$ $Q^2 = 5000 \text{ GeV}^2$ $Q^2 = 8000 \text{ GeV}^2$ 10 x = 0.13 (x20.0) 1 x = 0.18 (x8.0) 0.5 1 x = 0.25 (x2.4) **HERA Inclusive Working Group** 0 10⁻² 10-1 10^{-2} 10⁻¹ 0.8 $Q^2 = 15000 \text{ GeV}^2$ $Q^2 = 30000 \text{ GeV}^2$ Х -1 10 x = 0.40 (x0.7) 0.6 HERA I+II CC ep (prel.) 0.4HERAPDF1.5 x = 0.65 -1 10 0.2 0 104 10^{-2} 10^{-1} 10^{-2} 10⁻¹ 10^{2} 103 105 х Q^2/GeV^2 HERAPDF describe NC and CC data well

Neutral Current

H1 and ZEUS

HERAPDF predictions W lepton asymmetries at LHC

W lepton asymmetry is sensitive to differences between u and d:

$$A_{oldsymbol{W}}pproxrac{u_v-d_v}{u_v+d_v+2u_{sea}}$$

HERAPDF provide good description of LHC data

HERAPDF predictions for jets at LHC

Inclusive jet cross section as a function of jet p, in different regions of pseudorapidity

Predictions for W, Z cross sections at LHC

HERAPDF provide reliable predictions

Summary

HERA provide unique data to study the structure of the proton

New HERAPDF available based on combined HERAI and HERAII data

- Strong constraints on PDFs
- Available at NLO and NNLO
- Inclusion of jet data allows simultaneous determination of the strong coupling
 and gluon
- Inclusion of charm data allows constraints for the optimal value of the charm
 mass

HERAPDF provide very reliable predictions for LHC!