

Searches for non-SM physics in rare decays at the Tevatron

Louise Oakes for the CDF and DØ collaborations Technische Universität München

Rencontres de Blois Blois, 31st May 2011

CDF: 3.7 fb⁻¹ CDF Public Note 9892 DØ: 6.1 fb⁻¹ PLB 693, 539 (2010) CDF update in progress: 7 fb⁻¹

*B*_(s)->μμ: Motivation

- Search for $B_s \rightarrow \mu\mu$ is an SM benchmark in flavour physics
- Can only occur through higher order FCNC diagrams (in SM)
- Good BSM probe:
 - small predicted SM cross section

$$\mathcal{BR}(B_s \to \mu^+ \mu^-) = (3.2 \pm 0.2) \times 10^{-9}$$

(Buras et al, JHEP 1009 (2010) 106)

- very low theoretical uncertainties
- large class of BSM models predict large enhancements of $\mathscr{BR}(B_s \rightarrow \mu\mu)$
- clean signature

• ratio of $\mathcal{BR}(B_s \to \mu^+ \mu^-) / \mathcal{BR}(B_d \to \mu^+ \mu^-)$ can be used to discriminate between various BSM models

*B*_(s)-> μμ: Analysis technique

DØ and CDF use similar method:

- Rate of B_s->μμ is measured relative to a control channel, B⁺->J/ψK⁺, J/ψ->μμ
- Many systematic uncertainties cancel when taking the ratio

$$\mathcal{BR}(B_{s} \to \mu^{+}\mu^{-}) = \underbrace{\begin{bmatrix} N_{B_{s}} & \epsilon_{B^{+}}^{trig} \\ N_{B^{+}} & \epsilon_{B_{s}}^{trig} \\ \epsilon_{B_{s}}^{reco} & \alpha_{B^{+}} \\ \epsilon_{B_{s}}^{trig} \approx 1 \\ \epsilon_{B_{s}}^{trig} \approx 1 \\ \epsilon_{B_{s}}^{trig} \approx 1 \\ \frac{1}{\epsilon_{B_{s}}^{NN}} \approx 1 \end{aligned} \qquad \begin{array}{c} \frac{f_{u}}{f_{s}} & \approx 3 \\ \mathcal{BR}(B^{+} \to J/\psi K^{+} \to \mu^{+}\mu^{-}K^{+}) \approx 5 \times 10^{-5} \\ \frac{1}{\epsilon_{B_{s}}^{NN}} \approx 1 \\ \end{array}$$

Louise Oakes ~ DØ & CDF ~ Blois 2011

$B_{(s)}$ -> $\mu\mu$: Analysis technique

Estimate remaining background

Unblind -> determine \mathcal{BR} or limit

Louise Oakes ~ DØ & CDF ~ Blois 2011

$B_{(s)}$ -> $\mu\mu$: Background rejection

Signal is fully reconstructed, long lived decay

Background can be made up of:

Semi-leptonic decay:

 $b \to c\mu^{-}X \to \mu^{+}\mu^{-}Y$

Double semi-leptonic decay:
 bb->μ+μ-X

- μ+fake, fake + fake
- continuum $\mu^+\mu^-$

B->hadrons (peaking in B mass signal region)

Background is generally softer, short lived, not fully reconstructed, more tracks

$B_{(s)} \rightarrow \mu\mu$: NN

NN trained on:

31st May 2011

- MC for signal sample
- Side band data for background
- Extensive testing for mass bias
- 3 NN bins and 5 mass bins used to set limits for B_s and B_d

NN inputs: CDF

variables

isolation

NN inputs: DØ

 L_T / σ_{IT}

 p_T^B

 $\min(p_{\tau}^{\mu})$

secondary vertex

length and angular

 $p_T(B)$ and min (p_T^{μ})

secondary vertex fit χ^2

pointing angle

min μ impact

parameter sig.

7

$B_s \rightarrow \mu\mu$: DØ results

Red dashed line = SM signal x 100

At 95% CL: $\mathcal{BR}(B_s \to \mu^+ \mu^-) < 5.1 \times 10^{-8}$

- Expected bkg events in highest sensitivity region: 51 ± 4
- Observed events: 55

$B_{(s)}$ -> $\mu\mu$: CDF results

World's best limits At 95% CL:

$$\mathcal{BR}(B_s \to \mu^+ \mu^-) < 4.3 \times 10^{-8}$$

 $\mathcal{BR}(B_d \to \mu^+ \mu^-) < 7.6 \times 10^{-9}$

Events in signal region (0.995<v_{NN}<1)

Channel	Expected	Observed
B_s Central	4.0±1.0	3
B_s Extended	2.1±0.8	4
B_d Central	5.3±1.0	5
B_d Extended	2.8±0.8	3

$B_{(s)}$ -> $\mu\mu$: coming soon from CDF...

Doubling data sample -> 7 fb⁻¹

Improved NN signal efficiency:

- New 14 variable NN discriminator
- NN inputs carefully chosen to avoid bias in $M_{\mu\mu}$

Better background predictions

31st May 2011

Louise Oakes ~ DØ & CDF ~ Blois 2011

Expected $\mathcal{BR}(B_s \rightarrow \mu\mu)$ limits

95% CL Limits on $\mathcal{B}(B_s \rightarrow \mu\mu)$

CDF expected limit with 6.9 fb⁻¹: \sim 2 x 10 ⁻⁸

CDF: 4.4 fb⁻¹ PRL 106, 161801 (2011)
 Earlier publications:

- □ DØ: 0.45 fb⁻¹ PRD 74, 031107(R) (2006)
- □ CDF: 0.92 fb⁻¹ PRD 79, 011104(R) (2009)

b -> *sll*: *Motivation*

Only occurs through FCNC mediated decays (in SM)

- *b-> sll* is sensitive to New Physics in the $M^2_{\mu\mu} = q^2$ dependence of
 - hadron polarization
 - F-B asymmetry
- Predicted SM branching ratio:

 $\mathcal{BR}(b \to s\mu^+\mu^-)10^{-6} - 10^{-7}$

Tevatron experiments competitive with B factories in b-> sµµ modes

b -> sll: Analysis techniques

- Data collected with di-muon trigger
- Resonant modes $B \rightarrow J/\psi X$ used as control channel for non-resonant $b \rightarrow s\mu\mu$:

Signal Mode	Control Mode	
$B^0 ightarrow \mu^+ \mu^- K^*$	$B^0 ightarrow J/\Psi K^*$	
$B^+ ightarrow \mu^+ \mu^- K^+$	$B^+ ightarrow J/\Psi K^+$	
$B_s ightarrow \mu^+ \mu^- \phi$	$B_s ightarrow J/\Psi \phi$	

- Pre-selection cuts and NN developed on signal channel, systematic effects checked on normalisation modes
- Veto applied on μ from J/ψ , ψ'
- *b->charm* and *b->charmless* backgrounds reduced by kinematic cuts
- Acceptance and efficiency corrections are calculated on MC and validated on control samples.

b -> *sll*: *channels*

- First observation of $B_s \rightarrow \phi \mu^+ \mu^- \sim 6\sigma$
- Measured branching ratio consistent with theoretical expectation of 1.61 x 10⁻⁶

 $\mathcal{BR}(B_s \to \mu^+ \mu^- \phi) = 1.44 \pm 0.33 \text{ (stat.)} \pm 0.46 \text{(syst.)} \times 10^{-6}$

B^{0} -> $K^{*}\mu\mu$ and B^{+} -> $K^{+}\mu\mu$: Angular analysis

- Several BSM physics models predict A_{FB} in B⁰->K*μμ
- Distinguishable from SM:
 - sign flips in Wilson Coefficients relative to SM

16

Technique:

- Data binned in 5 or 6 bins of di-muon mass squared (q²)
- A_{FB} measured from muon angular distribution in dimuon rest frame, using unbinned maximum likelihood fit
- *F_L* (kaon longitudinal polarisation) measured from angular distribution of decay products in *K** rest frame

17

Current data consistent with both SM and NP models

Summary

- Powerful test of New Physics models using FCNC decays B_(s)->µµ and b->sll
- CDF has World's best limits on \mathcal{BR} of $B_{(s)}$ -> $\mu\mu$
- DØ and CDF are currently leading in rare B decay searches
- □ Updated and improved analysis of $B_{(s)}$ ->µµ with ~7 fb⁻¹ in progress from CDF
- Results shown here use ~ half of the total dataset

Further important results yet to come from Tevatron experiments in these modes

Back up

Louise Oakes ~ DØ & CDF ~ Blois 2011

Overview

Rare B decay channels:

- □ *B*_(s)->µµ
 - Motivation
 - Analysis technique
 - NN selection
 - Current Tevatron limits
 - Coming updates and expected limits
- **□** *B->hμμ*
 - Motivation
 - Analysis technique
 - Latest results
- Summary

The Fermilab Tevatron

Tevatron performance

- High luminosity is a benefit but also a challenge for B physics
- Expect almost twice the current sample by end of run-II

p-pbar collisions at 1.96TeV

- Constantly improving luminosity performance
 - peak instantaneous
 luminosity >3x10³² cm⁻²s⁻¹
 - ~10fb⁻¹ delivered to the experiments

B physics at CDF:

- Particle ID: dE/dx and TOF
- Excellent vertex resolution ~23µm and p_T resolution: $\sigma(p_T)/p_T^2 \sim 0.1 \text{ (GeV/c)}^{-1}$
- Trigger level silicon tracking

B physics at DØ:

- Solenoid (2TeV) polarity reversed weekly
- \square Strengths in semileptonic and J/ ψ decays
- Excellent calorimetry and electron ID

Hadron colliders vs B factories:

- + Much larger B production cross section, phase space, range of Bs generated
- Higher background, don't know initial state
- -> Larger signal for $\rm B_{s}$ at hadron machines but need sophisticated trigger and selection