

Results on QCD jet and photon production in ATLAS

Lydia Roos (LPNHE Paris)

on behalf of the ATLAS Collaboration

Rencontres de Blois, Particle Physics and Cosmology

Château Royal de Blois May 29-June 3, 2011

Inclusive Jet Production

Anti- k_t jets, R=0.4 or 0.6, in: • |y| < 4.4• 20 GeV < $p_T < 1.5$ TeV Integrated luminosity: 37.3±1.2 pb⁻¹

Theoretical predictions:

- NLOJet++ with CTEQ6.6 PDFs
- correction for non-perturbative effects using Pythia

Test in an extended kinematic region :

- NLO pQCD
- parton distribution functions

LPNHE

Comparison with PowHeg

- Significant difference between PowHeg+Pythia and PowHeg+Herwig
- Agree with data and NLO pQCD within uncertainties

Di-jet production

- p_{T1}>30 GeV, p_{T2}>20 GeV
- •|ymax| = max(|y₁|, |y₂|): from 0 to 2.8
- m₁₂ from 60 GeV to 4.1 TeV!

Lydia ROOS - 23rd Rencontres de Blois

At LHC, decay products of highly boosted heavy particles might be clustered in one single jet

 \rightarrow study of the jet substructure to discriminate from QCD background

- boosted W or top
- $H \rightarrow bb$ searches
- SUSY

Ideas tested on MC, need to be validated on data

Jet splitting and filtering:

- undo the last CA step
- search for symmetric splittings with large mass drop
- recluster filtering out large angle radiation.

May 29-June 3, 2011

Sample:

- 2010 data, N(primary vertex)=1
- \rightarrow integrated lumi: 8 pb⁻¹
- large area, central, boosted jets:
- p_T>300 GeV, |y|<2
 - Cambridge-Aachen R=1.2
 - Anti-k_T R=1

k_T splitting scale d₁₂: √d₁₂=min(p_{Ta},p_{Tb}) x δR_{a,b}

b

а

Specific study of jet calibration uncertainties is needed:

- Much larger jets than in the standard ATLAS jet analyses
- Check the uncertainty on the jet energy scale and mass scale
- ightarrow compare calorimeter jets with their corresponding track jets in MC and data

Final uncertainties:

Jet Algorithm	JES	JMS	JER	JMR
anti- $k_{\perp} R = 1.0$	5%	7%	20%	30%
Cambridge-Aachen $R = 1.2$	5%	6%	20%	30%
Cambridge-Aachen Filtered $R = 1.2$	6%	7%	20%	30%

	Scale	Resolution
<i>d</i> ₁₂	15%	30%

Cn

May 29-June 3, 2011

Lydia ROOS - 23rd Rencontres de Blois

CNTS

Photons

Inclusive Photon Production

Two measurements:

• L=0.88 pb⁻¹: 15-100 GeV, |η|<1.37, 1.52<|η|<1.81

Background subtraction in signal enriched region :

Reverse some ID cuts (minimize correlation)

• L=34.6±1.2 pb⁻¹ : 45-400 GeV, |η|<1.37, 1.52<|η|<2.37

Theoretical prediction: JetPhox with CTEQ6.6 PDFs

with E_{τ}^{iso}) • E_T^{iso}>5 GeV μ fail tight cuts С D В pass tight cuts Α 0 5 20 35 -5 10 15 E^{iso} [GeV]

to first approximation: $N_A^{sig} = N_A - N_B x (N_C / N_D)$

Lydia ROOS - 23rd Rencontres de Blois

Subtract γ -jet and jet-jet background using isolation efficiency matrix method from Tevatron

Alternative methods are:

- an extended 2x ABCD method
- a fit to the 2D isolation transverse energy distribution of the two candidates

Projections of the 2D isolation fit result

Clear di-photon signal in isolation distributions

Differential cross-sections as function of observables of the two-photon system

Summary

Only a few jet and photon ATLAS studies presented here:

- Inclusive jet and di-jet cross-sections:
 - Good agreement with NLO calculation
 - start to probe PDFs, NLO generators
- First measurement of jet mass and jet substructure!
 - Validation of LO MC predictions
- Inclusive photon production cross-section up to 400 GeV
 - Very good agreement with NLO calculation except at low transverse energy

• First measurement of di-photon differential cross-section!

 Significant discrepancies with NLO generators observed in the distribution of the azimuthal angle between the two photons

More...

Papers and conference notes

- All results presented in these slides can be found on http://cdsweb.cern.ch/
- Inclusive jet and di-jet cross-section
 ATLAS-CONF-2011-47
- Jet mass and substructure
 - ATLAS-CONF-2011-73
- Inclusive photon cross-section
 - Phys. Rev. D 83 (2011) 052005
 - ATLAS-CONF-2011-58
- Di-photon cross-section: coming soon

Jet calibration

Standard ATLAS jets: anti-kT, R=0.4 or 0.6, energy measured at the EM scale

Jet Energy Scale estimation:

- correct for pile-up
- set jet origin to primary vertex
- correct energy by reco vs truth in MC

JES uncertainty estimation in $|\eta| < 0.8$:

- single particle response from E/p and beam tests non-closure due to average over jet components & non-zero jet mass
- MC: noise & material, event modelling

Validation by in-situ measurements

10³

 p_{τ}^{jet} [GeV]

JES uncertainty

Inclusive jet production

Di-jets

May 29-June 3, 2011

20

hadronic top candidate

Run Number: 167576, Event Number: 106929590

Date: 2010-10-24 12:10:09 EDT

EM Calorimeter

Photon identification variables

	variable	Definition	description
	R _{had1}	$R_{\text{had}_1} = \frac{E_T^{\text{had}_1}}{E_T}$	Hadronic leakage
٢	R _η	$R_{\eta} = \frac{E_{3\times7}^{S2}}{E_{7\times7}^{S2}}$	$E_{3\times7}$
$\left \right $	R_{ϕ}	$R_{\phi} = \frac{E_{3\times3}^{S2}}{E_{3\times7}^{S2}}$	E_{7X7}
L	ω ₂	$\omega_2 = \sqrt{\frac{\sum E_i \eta_i^2}{\sum E_i} - \left(\frac{\sum E_i \eta_i}{\sum E_i}\right)^2}$	Shower width in middle layer
٢	ω_{s3}	$\omega_{s3} = \sqrt{\frac{\sum E_i (i - i_{\max})^2}{\sum E_i}}$	Shower width in 3 strips around the hottest strip
	$\omega_{s tot}$	$\omega_{s ext{tot}} = \sqrt{rac{\sum E_i (i - i_{ ext{max}})^2}{\sum E_i}}$	Shower width in all strips
	F _{side}	$F_{\rm side} = \frac{E(\pm 3) - E(\pm 1)}{E(\pm 1)}$	$E_{\pm 1}$
	ΔΕ	$\Delta E = E_{2^{\rm nd}\max}^{S1} - E_{\min}^{S1}$	E_{min}
L	E _{ratio}	$E_{\rm ratio} = \frac{E_{1^{\rm st}\rm max}^{S1} - E_{2^{\rm nd}\rm max}^{S1}}{E_{1^{\rm st}\rm max}^{S1} + E_{2^{\rm nd}\rm max}^{S1}}$	

Middle Layer

Strip Layer

Photons

Efficiencies from MC:

- shift shower shapes to match data
- unconverted and converted separately
- checked on $W \rightarrow ev$

Inclusive photons

Lydia ROOS - 23rd Rencontres de Blois

Leading-Order:

NLO corrections: in ResBos and Diphox

NLL resummation: resummation of divergences arising at small $P_{T\gamma\gamma}$ due to initial-state soft gluon emission

Fragmentation contribution: provides a complete treatment of the collinear part of brem

In DiPhox (NLO 1 and 2-photon fragmentation) but not in ResBos (LO 1-photon fragmentation only)

Di-photons: matrix method

Event-by-event: $S_{XY} = 0$ or 1, W_{ab} is a weight for each category $\gamma\gamma$, γj , $j\gamma$, or jj

To be taken into account:

- ϵ_1, ϵ_2 depend on η, f_1, f_2 on η and p_T
- correlations between the two candidates