

QCD Results with Jets and Photons On Behalf of the CMS Collaboration

N. Saoulidou*, Fermi National Accelerator Laboratory

* Now at the University of Athens Greece

23rd Rencontres de Blois Particle Physics and Cosmology May 28 – June 3 2011

Outline

- Introduction
- Jet reconstruction
- Jet Energy Scale and Resolution
- QCD with Jets:
 - Inclusive Jet Cross Section
 - Di-Jet Cross Section
 - Di-Jet Azimuthal Decorrelations
 - Di-Jet Angular Distributions
- Photon reconstruction and Identification
- QCD with Photons:
 - Inclusive Photon Cross Section
- Summary Conclusions

Introduction

- QCD measurements with Jets and Photons are of great important in order to:
 - Test pQCD in a new energy regime, in a totally unexplored kinematic region.
 - Tune Monte Carlo generators in order to better describe the data.
 - Commission and understand basic physics objects (photons and jets) used in all analysis looking for New Physics (NP)
 - Measure and understand the main background to most NP physics searches, or get a chance to have a first glimpse of something new and unexpected.

CMS Experiment

Results presented here make use of the 2010 Data Run with a total integrated luminosity of 36 pb⁻¹ out of the 47 pb⁻¹ delivered and 43 pb⁻¹ recorded.

Jet Reconstruction

p [GeV]

25 20 15

10

- Anti-kt clustering algorithm : with a cone R = 0.5, which is infrared and collinear safe, geometrically well defined, and tends to cluster around the hard energy deposits.
- Calorimeter Jets
 Clustering of Calorimeter Towers composed of ECAL and HCAL energy deposits
- Particle Flow Jets : Clustering of Particle Flow candidates constructed combining information from all sub-detector systems.

anti-k,, R=1

Jet Energy Scale and Resolution

Inclusive Jet Cross Section

Accelerator Laboratory

Inclusive Jet Cross Section

Good agreement between data and theory.

N. Saoulidou, Fermi National Accelerator Laboratory

Dijet Cross Section

Dijet Cross Section

Good agreement between pQCD@NLO and Data.

Dijet Angular Distributions from Resonances and QCD

- Parton-parton scattering in QCD is t-channel dominated.
- Stringent test of pQCD with no dependence on PDFs.
- New physics would show deviations from expectation at large scattering angles.

Dijet Angular Distributions

 $\chi = e^{|y_1 - y_2|} pprox rac{1 + |\cos heta^*}{1 - |\cos heta^*|}$

- X chosen since QCD flat as a function of x.
- Experimental uncertainties dominated by jet resolution and relative (vs η) JES (absolute cancels)
- Theoretical uncertainties dominated by non perturbative corrections and renormalization scale.
- Good agreement between data and theory. Highest mass bins sensitive to contact interactions.

Phys.Rev.Lett.106:201804,2011

Accelerator Laboratory

Dijet Azimuthal Decorrelations

- Normalized Dijet cross section as a function of Δφ and indirect probe of multijet topologies
- NLO pQCD describes the data well up to $\sim 2\pi/3$, NNLO needed for higher jet multiplicities

Phys.Rev.Lett.106:122003,2011.

Dijet Azimuthal Decorrelations

Photon Reconstruction

Photons are key objects for both calibration and major discoveries. (H-> $\gamma\gamma$ and BMS searches)

• Photons are isolated energy deposits in the ECAL, with no charged track pointing to them, and with a shape compatible with a photon electromagnetic Shower.

Inclusive Photon Cross Section

Inclusive Photon Cross Section

Phys.Rev.Lett.106:082001,2011.

Good agreement of data with pQCD at NLO

Summary - Conclusions

- CMS has very good understanding of jet reconstruction and calibration as well as photon reconstruction and identification.
- Using these physics objects many important as well as challenging QCD measurements have been performed and published.
- The agreement between data and pQCD at NLO has been surprisingly good.
- With the 2011 data, CMS plans to perform precision studies and differentiate between the various PDFs, and perhaps gets a glimpse of the "unexpected".

BACKUP

Photon Shower Shape

Theory Predictions

• QCD Monte-Carlo generators:

- PYTHIA6
- PYTHIA8
- HERWIG++
- ALPGEN
- MADGRAPH
- Proton PDFs
 - CT10: α S(MZ) = 0.1180
 - MSTW2008: α S(MZ) = 0.1202
 - NNPDF2.0: $\alpha S(MZ) = 0.1190$

Perturbative QCD Calculations

Next to leading order using NLOJet++ program at the fastNLO package

Non Perturbative Corrections

- MPI
- Hadronization

PDF4LHC

prescription The PDF4LHC describes the way to combine the $d^{2}\sigma/dp_{T}dy_{P}DF$ / $d^{2}\sigma/dp_{T}dy_{C}TEQ6.6$ NLOJet++/fastNLO, ∆PDF various PDFs: Inclusive Jets 1.2 Anti-k_T, R=0.5 $0.0 \leq |\gamma| < 0.5$ compute the observable of interest with each PDF set - construct the 1-sigma (68% CL) band from each PDF set PDF4LHC - at every point, define the global CTEQ6.6 (CL90) 0.8 CT10 (CL90)/1.65 envelope from the 1-sigma bands MSTW2008 (CL68) NNPDF2.0 (CL68) the PDF4LHC prediction is the 10³ 10²

center of the global envelope

p_T/GeV

Non perturbative corrections

- Non perturbative corrections needed to go from parton to particle level, and hence be able to compare theory with data.
- Non perturbative corrections account for :
 - Multi-parton interactions
 - Hadronization effects
- Use different MC generators to estimate, and take spread as systematic uncertainty.

*

JetPhox Predictions

- NLO pQCD
 - JETPHOX1.1,CT10 PDFs, BFG II FF
 - Renormalization, fragmentation, and factorization scales set to ET
 - Require "isolated" definition: ΣΕΤ<5 GeV within R<0.4
- Scale uncertainty
 - 30 to 11% with ET, change all scales to ET/2 and 2ET
- PDF uncertainty
 - 6% over full ET range
- Envelope of CT10, MSTW08 and NNPDF2.0 (PDF4LHC recommendation)
- CTEQ6M instead of CT10: 3%
- BFG I instead of BFG II: <1%
 - N. Saoulidou, Fermi National Accelerator Laboratory

25

Non Perturbative Corrections **‡**

Accelerator Laboratory

- Non-perturbative effects increase energy in isolation cone
- Correction is obtained by comparing the efficiency of isolation cut of 5GeV in a cone of radius 0.4 with and without:
 - Multi-parton interaction
 - Hadronization
- Final correction is the mean of the four different tunes considered
 - D6T
 - Z2
 - DWT
 - P0
- ~3% overall correction applied to the NLO calculation
 N. Saoulidou, Fermi National

Smearing Correction

• Unfolding correction through forward smearing : Generate true jet mass according to the NLO spectrum and smear using the MC mass resolution (bin by bin correction)

- Straightforward to study the systematics by varying the spectrum slope and the Dijet mass resolution
- The result agrees with the more advanced SVD and Bayes Unfolding methods
- The unfolding correction is small (between 0.94 and 0.98) for all rapidity bins

- The JES uncertainty is mapped on the dijet mass variable through "jet-by-jet" shifting and taking the average over all jets in each rapidity bin.
- For outer rapidity bins, the mass scale uncertainty is lower because it probes smaller jet p_T.

Experimental Uncertainties

•The total experimental uncertainty ranges from ~15% at low mass values to ~60% at high mass values.

- This is almost the same for all rapidity bins
- The major contribution to the total experimental uncertainty comes from the JES uncertainty
- The unsmearing uncertainty is of order ~2 -3%

Theoretical Uncertainties

- The PDF uncertainty is estimated according to the PDF4LHC prescription through the variation of the PDF sets.
- Maximal deviation of the six point variation is used to estimate the renormalization and factorization scale uncertainties

 $(\mu_R/pT_{ave}, \mu_F/pT_{ave})=(1/2, 1/2),$ (2, 2), (1, 1/2), (1, 2), (1/2, 1), (2, 1)

•The non-perturbation correction uncertainty is estimated as half of the NP correction deviation from unity